论文部分内容阅读
针对目前工业现场织物疵点检测准确率低、速度慢和疵点识别种类少的问题,提出一种改进ResNet50网络的织物疵点检测算法。首先对数据集进行预处理,对数据样本切割增强生成模型训练集,包括无疵点和8类常见疵点类别;然后改进ResNet50网络结构,提取在大型数据集ImageNet上预训练好的权重参数迁移学习;最后反复调整超参数训练得到的疵点检测识别模型。通过多组对比实验结果表明,改进模型对正常织物和8类常见疵点识别准确率达到96.32%,比标准模型精度提升4.2%,速度提升1倍。在不同织物疵点数据集中测试