论文部分内容阅读
为了有效检测恶意网络钓鱼(phishing)行为,提出一种基于URL特征的phishing检测方法.该方法首先对现有钓鱼URL与合法URL进行分析对比,提取钓鱼URL的显著特征,然后采用机器学习算法对样本数据集训练从而获得分类检测模型,用来检测待检测的URL.为适应钓鱼URL的变化,分类模型需要根据新增样本不断更新,因此,设计了一种基于原始样本数据反馈的增量学习算法.实验表明:提取的URL特征与支持向量机(SVM)分类算法的结合能够使phishing检测达到较高的检测精度,且该增量学习算法是有效的.