论文部分内容阅读
现有的网络表示学习方法缺少对网络中隐含的深层次信息进行挖掘和利用。对网络中的潜在信息做进一步挖掘,提出了潜在的模式结构相似性,定义了网络结构间的相似度分数,用以衡量各个结构之间的相似性,使节点可以跨越不相干的顶点,获取全局结构上的高阶相似性。利用深度学习,融合多个信息源共同参与训练,弥补随机游走带来的不足,使得多个信息源信息之间紧密结合、互相补充,以达到最优的效果。实验选取Lap、DeepWalk、TADW、SDNE、CANE作为对比方法,将3个真实世界网络作为数据集来验证模型的有效性,进行节点分类