非遗缂丝抖音平台传播策略研究

来源 :江苏丝绸 | 被引量 : 0次 | 上传用户:buhuigreen
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
UGC(用户生产内容)时代的到来,短视频异军突起,不仅带动了抖音、快手等相关平台的兴盛,更是改变了用户互联网的接触行为.作为非遗代表的缂丝,恰可以利用“互联网+短视频”的形式,实现传播方式的新转变.本文以抖音平台缂丝类短视频号为研究对象,分析以短视频方式传播缂丝技术和文化的优势,以及目前该类型视频号存在的普遍问题,并在此基础上提出优化策略,推动“互联网+”环境下非遗缂丝的创新传播.
其他文献
本文分析了商品混凝土的碳足迹,重点分析混凝土生产企业碳排放特点,在此基础上提出了相应的低碳混凝土生产技术,以及对低碳型混凝土生产企业建设提出思考.
越野轮胎起重机是一款操作方便、路面适应性强,可带载行走,可用于建筑工地的吊装作业的非道路车辆.回转支承是起重机回转系统的重要组成部分,和转台、吊臂、底盘组成起重机工作机构,承载回转过程中的各种工况.其中回转支承主要用于连接转台、吊臂和底盘,是传递转台与底盘间各种载荷的重要部件,因此也是回转时容易出现故障的地方.本文旨在指出起重机作业过程中可能出现的回转异响状况,根据现场现象初步判断,浅析越野轮胎起重机回转异响的适用方案.
针对现有决策树算法对连续性数据分类的信息丢失、效果不佳等缺点,提出一种邻域决策树(NDT)构造算法.首先,挖掘了邻域决策信息系统上的变精度邻域等价粒,并探讨了相关性质;然后基于变精度邻域等价粒构建邻域基尼指数度量,以度量邻域决策信息系统的不确定性;最后,用邻域基尼指数度量诱导出树节点的选取条件,并以变精度邻域等价粒为树分裂规则,从而构建NDT.在UCI数据集进行实验的结果表明,NDT算法的准确度比基于信息熵的决策树算法ID3、基于基尼指数的决策树算法CART、基于信息增益率的决策树(C4.5)算法和融合信
介绍某型挖掘机工作过程中经常反馈发动机水温高甚至报警,每天早上检查散热器上水室均发现缺冷却液,需要补充冷却液.根据故障现象从冷却系统结构及原理方面分析问题原因,排查出水温高的根本原因是水箱盖密封不严导致散热器不能正常回水,最终通过水箱盖设计改进消除故障.
针对现有人群计数算法采用同步人工优化深度学习网络,忽略了网络学习的负面信息,导致大量冗余参数甚至过拟合,进而影响到计数准确性的问题,提出基于多列卷积神经网络MCNN(Multi-column Convolution Neural Network)的参数异步更新算法.首先将单帧图像输入网络,经过三列卷积分别提取不同尺度特征,通过列之间的交互信息学习两列间特征图的关联性;接着,根据优化的交互信息及更新的损失函数异步更新每列参数直至算法收敛;最后采用动态卡尔曼滤波将每列输出密度图进行深度融合,并对融合的密度图中
现有新闻推荐模型在挖掘新闻特征和用户特征时,往往没有考虑所浏览新闻之间的关系、时序变化以及不同新闻对用户的重要性,从而缺乏全面性;同时,现有模型在新闻更细粒度的内容特征挖掘方面有欠缺.因此构建了一个能够全面而不冗余地进行用户表征并能提取新闻更细粒度片段特征的新闻推荐模型——注入注意力机制的深度特征融合新闻推荐模型.该模型首先采用基于深度学习的方法,通过注入注意力机制的卷积神经网络(CNN)对新闻文本特征矩阵进行深度提取;然后,通过对用户已经浏览的新闻添加时序预测,并注入多头自注意力机制,来提取用户的兴趣特
在软件定义网络(SDN)中,各类网络应用的独立开发以及多用户的网络管理可能导致下发至交换设备的流规则发生冲突,而控制平面与转发平面的分离使得交换设备缺乏策略分析能力,无法独立检测内部的流规则冲突.针对这一问题,提出一种流规则冲突检测系统和检测算法.首先,通过监听、捕获控制平面与转发平面之间的OpenFlow报文,获取即将下发的流规则的信息.然后,使用冲突检测算法判定流规则的冲突类型.该算法根据流规则的匹配协议选择对应的规则集合,从而缩小了检测规模;而且在检测时优先对无冲突(NC)规则的特征进行检测,使得对
针对目前用多目标进化算法(MOEA)处理约束多目标优化问题(CMOP)的研究通常以解决单一类型约束为主,而在面对不同种类的复杂约束时算法难以收敛或者种群分布性差的问题,以基于分解的多目标进化算法(MOEA/D)框架为基础,提出一种基于参考向量的自适应约束多目标进化算法(ARVCMOEA).首先将参考向量分成主参考向量及辅助参考向量两部分,然后在算法起始阶段通过无约束的辅助参考向量指导种群快速跨越不可行区间,最后通过自适应地调整辅助参考向量的位置及弱化对其的分布性要求来提高算法分布性及搜索能力.实验在30个
作为循环程序终止性分析的主流方法,当前的秩函数方法大多局限于线性或多项式秩函数的求解.针对循环程序若不存在对应的线性或多项式秩函数,现有秩函数方法就无法证明其终止性的问题,提出一个新的方法来合成给定循环程序对应的界函数.对于给定的循环程序,倘若能找到其界函数,则表明该循环程序是可终止的.首先将界函数的求解问题转化为一个线性二分类问题,并在选定界函数模板后,根据模板建立映射关系以构建训练集;然后利用所得训练集通过支持向量机(SVM)获取分类超平面进而求解得到模板系数,从而得到候选的界函数;最后利用现有的符号
计算机断层扫描(CT)三维重建技术通过上采样体数据来提高三维模型质量,减轻模型中的锯齿状边缘、条纹状伪影和不连续表面等现象,从而提高临床医学中疾病诊断的准确率.针对以往CT三维重建后模型仍然不够清晰的问题,提出一种基于超分辨率网络的CT三维重建算法.网络模型为具有双重损失的优化学习纵轴超分辨率重建网络(DLRNet),通过单轴超分辨率进行腹部CT三维重建.网络末端引入优化学习模块,且除计算基准图与超分辨率图像的损失外,还计算网络内部粗略重建图像与基准图的损失,这样一来,优化学习与双重损失能使网络产生更接近