变邻域遗传算法在车间物流调度中的应用

来源 :计算机系统应用 | 被引量 : 0次 | 上传用户:zhulixiao66
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对含有自动引导小车(Automated Guided Vehicle,AGV)的离散化车间物流调度问题,以最小化物流任务时间惩罚成本和最小化运载小车的总行驶距离为优化目标,构建离散化车间多目标物流调度优化模型,设计一种基于Pareto寻优的多目标混合变邻域搜索遗传算法(VNSGA-II).以遗传算法为基础,通过使用NSGA-II的Pareto分层和拥挤度计算方法评估种群优劣实现多目标优化,为了提高算法的寻优能力,避免算法陷入局部最优,通过添加保优记忆库对精英个体进行保护,并利用变邻域搜索算法在搜索过程中的局部寻优能力,针对本文模型特点,设计6个随机邻域结构,来达到算法求解最优值的目标.并提出了基于关键AGV小车的插入邻域和基于关键物流任务的交换邻域调整策略以进一步降低成本.最后,以某离散车间物流调度为实例,分别使用VNSGA-II、带精英策略的快速非支配排序遗传算法Ⅱ(Nondominated Sorting Genetic AlgorithmⅡ,NSGA-II)和强Pareto进化算法(Strong Pareto Evolutionary Algorithm 2,SPEA2)对问题进行求解,计算结果表明,VNSGA-II能得到更好的Pareto解集,验证了算法的有效性和可行性.
其他文献
车道线检测是无人驾驶任务中最重要的模块之一.由于车道线具有独特的结构,且容易受到各种各样复杂环境(比如光线、遮挡、模糊等)的影响,因此车道线检测也是一项很具有挑战性的任务.传统的卷积神经网络(CNN)难以直接学习到精细的车道线空间特征,本文使用空间特征聚合模块对CNN提取的特征在空间维度进行融合增强,为级联的车道线预测器提供了丰富的空间特征信息.实验证明,空间特征聚合模块通过聚合水平和垂直方向的特征图获取精细的全局信息,在多种复杂环境下都能提升车道线检测算法的性能,且不会影响检测的速度.
针对关系型知识蒸馏方法中教师网络与学生网络的层数差距过大导致蒸馏效果下降的问题,提出一种基于关系型蒸馏的分步神经网络压缩方法.该方法的要点在于,在教师网络和学生网络之间增加一个中间网络分步进行关系型蒸馏,同时在每一次蒸馏过程中都增加额外的单体信息来进一步优化和增强学生模型的学习能力,实现神经网络压缩.实验结果表明,本文的方法在CIFAR-10和CIFAR-100图像分类数据集上的分类准确度相较于原始的关系型知识蒸馏方法均有0.2%左右的提升.
随着医疗数据信息化的发展,电子病历在异地就诊以及医学研究方面的作用越来越大.为解决异地就医时电子病历的交互问题,拟提出一个跨组织的多医院间电子病历交互平台;根据平台的业务流程,提取各个组织的活动和资源元素;针对交互过程中各组织的活动和资源之间的关系,结合多色集合和围道矩阵分别从不同组织的不同视角提取各组织的外部交互活动和交互资源;同时,对业务流程进行研究并提出相应的形式化描述模型.
用户在使用现有的搜索引擎时,常因为无法构造清晰准确的查询词而导致检索效果不佳,传统的查询推荐方法没有充分考虑用户行为的关联性,导致了查询推荐的结果不准确.本文提出了一个新的查询推荐模型,即基于点击模型和网络嵌入的查询推荐模型.该模型首先通过点击链式模型嵌入用户的历史检视行为和点击行为,并通过注意力机制衡量查询和返回文档的相关性;然后利用属性异构网络来获取复杂异质网络结构中的潜在语义信息;最后通过多头注意力捕获多个空间的复杂信息,并利用多任务学习来做评分预测.在搜狗实验室提供的公开查询日志上的实验结果表明,
基于异构冗余架构的择多表决机制实现了拟态防御系统的容错机制.在拟态通用运行环境(Mimic Common Operating Environment,MCOE)中.由外部表决模块对异构执行体响应数据进行大数表决来实现这一机制.为完善表决机制,提高表决速度,本文提出了基于历史表现安全性和异构置信度的大数表决机制和并行聚类算法.改进的大数表决机制有效地修补了简单大数表决机制存在的无法产生表决结果以及忽视执行体本身安全性和相关性的问题;并行聚类算法解决了表决过程中数据闲置的问题,显著提高了表决速度.此外为了保证
传统的KNN算法存在分类效率低等缺点.针对这些缺点,本文提出一种高效的结合多代表点思想的加权KNN算法,利用变精度粗糙集上下近似区域的概念,结合聚类算法生成代表点集合构造分类模型,再运用结构风险最小化理论优化分类模型并对影响分类模型的因素进行分析.分类过程中根据测试样本与各代表点的相似度,得到测试样本的相对位置.其中属于样本点下近似区域的测试样本可直接判断其类别.若测试样本在其他区域,则根据测试样本与各代表点的相对位置对各代表点覆盖范围内的样本进行加权后判断测试样本的类别.在文本分类领域的数据集上进行实验
针对企业命名实体的识别任务的过程复杂、学科交叉、实时性差等难点,提出了一种基于并行子空间优化的方法.首先,建立系统的目标-约束方程完成系统级优化;其次,再通过构建文字检测、文字识别两级模型,并考虑现存不同模型的优缺点进行模型选择的方法对涉及学科进行并行优化;随后,再使用图像阈值、灰度化、霍夫变换等算法构建两级模型的衔接;最后,通过仿真实验,验证了本文方法相比其他两级文字检测识别模型的识别准确率提高了9%,推理速度提升约20%.
短文本匹配是自然语言处理领域中的一个核心问题,可应用于信息检索、问答系统、复述问题等任务.过去的工作大多在提取文本特征时只考虑文本内部信息,忽略了两个文本之间的交互信息,或者仅进行单层次交互.针对以上问题,提出一种基于Transformer改进的短文本匹配模型ISTM.ISTM模型以DSSM为基本架构,利用BERT模型对文本进行向量化表示,解决Word2Vec一词多义的问题,使用Transformer编码器对文本进行特征提取,获取文本内部信息,并考虑两个文本之间的多层次交互信息,最后由拼接向量推理计算出两
污染物浓度变化趋势对于环境监测工作意义重大.现今各种前馈神经网络预测模型的输出结果仅与当前输入有关,无法研究污染物数据前后依赖关系.且多种污染物具有相同排放源,污染物间往往存在潜在关联关系,一种污染物的变化可能反映另一种污染物变化,所以在预测中需考虑其他敏感参数的影响.针对上述两个问题,提出一种基于敏感参数发现的区域重点污染物浓度预测方法.应用关联规则算法及多元回归分析挖掘出各污染物的敏感参数,构建多变量LSTM预测模型,将待预测污染物及其敏感参数作为预测模型特征变量,进行污染物的浓度预测.实验结果表明本
机组排班是航空公司运营计划非常重要的一个环节,合理的机组排班可以为航空公司省下一大笔机组成本支出,从而增加航空公司的收益.由于机组排班过程涉及大量的复杂约束,属于NP难问题,因此优化求解困难.本文提出了一种基于可满足性模理论(Satisfiability Modulo Theories,SMT)的航空公司机组排班问题的优化求解方法,将机组排班过程中的各种约束转化为一阶逻辑公式,设立求解目标为最小化成本和最大化机组利用率,将问题转化为求在给定逻辑公式可满足情况下的最优解,并利用SMT求解器Z3进行求解.实验