论文部分内容阅读
Magnetic reconnection is a very important and fundamental plasma process in transferring energy from magnetic field into plasma. Previous theory, numerical simulations and observations mostly concen-trate on 2-dimensional (2D) model; however, magnetic reconnection is a 3-dimensional (3D) nonlinear process in nature. The properties of reconnection in 3D and its associated singular structure have not been resolved completely. Here we investigate the structures and characteristics of null points inside the reconnection diffusion region by introducing the discretized Poincaré index through Gauss integral and using magnetic field data with high resolution from the four satellites of Cluster mission. We esti-mate the velocity and trajectory of null points by calculating its position in different times, and compare and discuss the observations with different reconnection models with null points based on character-istics of electric current around null points.
Magnetic reconnection is a very important and fundamental plasma process in transferring energy from magnetic field into plasma. Previous theory, numerical simulations and observations mostly concen-trate on 2-dimensional (2D) model; however, magnetic reconnection is a 3- ) nonlinear process in nature. The properties of reconnection in 3D and its associated singular structure have not been resolved completely. Here we investigate the structures and characteristics of null points inside the reconnection diffusion region by introducing the discretized Poincaré index through Gauss integral and using magnetic field data with high resolution from the four satellites of Cluster mission. We esti-mate the velocity and trajectory of null points by calculating its position in different times, and compare and discuss the observations with different reconnection models with null points based on character-istics of electric current around null points.