论文部分内容阅读
在目标跟踪过程中,目标的动态模型通常在笛卡尔坐标系中,而量测是在极/球坐标系中得到的。在基于卡尔曼滤波及其一些改进算法中,设定量测方差固定不变,可能导致滤波发散。为此提出了一种基于时变量测方差的多传感器资源管理算法。该算法通过统计方法求出转换测量值误差的均值和方差,利用转化卡尔曼滤波算法估计误差协方差,基于协方差的效能函数进行多传感器多目标分配。仿真结果显示该算法在目标跟踪过程中满足跟踪精度要求,并实现传感器资源的充分的利用。