论文部分内容阅读
Recycled ceramic mixed sand(RCMS) was obtained by partially replacing ultra-fine sand with recycled ceramic coarse sand(RCCS). The effects of RCCS replacement rate on the apparent density, workability, compressive strength and splitting tensile strength of recycled ceramic concrete(RCC) were investigated. In addition, the relationship between the water-cement ratio and compressive strength of RCC was also studied. The experimental results indicate that the reusing of recycled ceramic aggregate can improve the cohesiveness and water retentiveness of fresh concrete and benefit the mechanical properties development. When the RCCS replacement rate is not less than 40%, the mechanical properties of RCC are superior to those of the reference concrete. Moreover, when recycled ceramic medium sand was completely used as fine aggregate, the maximum increase in both compressive strength and splitting tensile strength were obtained, comparing with those of reference concrete, the increment ratio was 19.85% and 32.73%, respectively. The microscopic analysis shows that the using of recycled ceramic aggregate can meliorate distinctly the structure of the interfacial transition zone(ITZ) and increase the compaction degree of cement paste. Furthermore, an expression of the compressive strength of RCC and the cement-water ratio is regressed and gains a good linear relativity. It is an effective way to recycle waste ceramic, and the consumption of recycled ceramic aggregate could reach from 26.9% to 47.6% of the total weight of aggregate in producing concrete.
Recycled ceramic mixed sand (RCMS) was obtained by partially replacing ultra-fine sand with recycled ceramic coarse sand (RCCS). The effects of RCCS replacement rate on the apparent density, workability, compressive strength and splitting tensile strength of recycled ceramic concrete (RCC In addition, the relationship between the water-cement ratio and compressive strength of RCC was also studied. The experimental results indicate that the reusing of recycled ceramic aggregate can improve the cohesiveness and water retentiveness of fresh concrete and benefit the mechanical properties When the RCCs replacement rate is less than 40%, the mechanical properties of RCC are superior to those of the reference concrete. Moreover, when recycled ceramic medium sand was used as fine aggregate, the maximum increase in both compressive strength and splitting tensile strength were obtained, comparing with those of reference concrete, the increment ratio w as 19.85% and 32.73%, respectively. The microscopic analysis shows that the using of recycled ceramic aggregate can meliorate distinctly the structure of the interfacial transition zone (ITZ) and increase the compaction degree of cement paste. of RCC and the cement-water ratio is regressed and gains a good linear relativity. It is an effective way to recycle waste ceramic, and the consumption of recycled ceramic aggregate could reach from 26.9% to 47.6% of the total weight of aggregate in producing concrete.