【摘 要】
:
Epoxy resin is one of the most widely used thermoset polymers in high-performance composite materials for lightweight applications. However, epoxy has a high coefficient of friction, which limits its tribological applications. In this study, the effect wa
【机 构】
:
Faculty of Health,Engineering and Sciences,University of Southern Queensland,Toowoomba,QLD,Australia
论文部分内容阅读
Epoxy resin is one of the most widely used thermoset polymers in high-performance composite materials for lightweight applications. However, epoxy has a high coefficient of friction, which limits its tribological applications. In this study, the effect was investigated of different weight fractions of solid lubricant graphene nanoplatelets (GNPs), ranging from 0 to 4.5 wt%, on mechanical and adhesive wear performance of epoxy. Adhesive wear tests covered mild and severe wear regimes. The correlation of tribological and mechanical properties was studied as well. Scanning electron microscopy (SEM) was used to observe the failure mechanisms for both tribological and mechanical samples after each test. The results revealed that the addition of GNPs to the epoxy improved its stiffness and hardness but reduced its fracture strength and toughness. Adhesive wear performance exhibited high efficiency with GNP additions and showed reductions in the specific wear rate, the coefficient of friction, and the induced interface temperature by 76%, 37%, and 22%, respectively. A fatigue wear mechanism was predominant as the applied load increased. Most importantly, severe wear signs occurred when the interface temperature reached the heat distortion temperature of the epoxy. The tribological, and mechanical properties showed only a weak correlation to each other. The addition of GNPs to epoxy by less than 4.5 wt% was highly efficient to improve the wear performance while maintaining the fracture strength and toughness. Fourier transform infrared spectroscopy (FTIR) analysis shows no chemical interaction between the epoxy matrix with GNPs, which implies its physical interaction.
其他文献
A macroscopically nominal flat surface is rough at the nanoscale level and consists of nanoasperities. Therefore, the frictional properties of the macroscale-level rough surface are determined by the mechanical behaviors of nanoasperity contact pairs unde
Understanding asperity flattening is vital for a reliable macro-scale modeling of friction and wear. In sheet metal forming processes, sheet surface asperities are deformed due to contact forces between the tools and the workpiece. In addition, as the she
The tribological behaviors of Ti–Ni51.5 at% alloy strengthened by finely dispersed Ni4Ti3 particles in reciprocating sliding against GCr15, Al2O3, and ZrO2 at room temperature were studied. Interestingly, the coefficient of friction (COF) suffered a sheer
Alloys used as bearings in aircraft landing gear are required to reduce friction and wear as well as improve the load-carrying capability due to the increased aircraft weights. Cu–15Ni–8Sn–0.8Nb alloy is well known for possessing good mechanical and wear
Aluminium alloys are commonly used as lightweight materials in the automotive industry. This non-ferrous family of metallic alloys offers a high versatility of properties and designs. To reduce weight and improve safety, high strength-to-weight ratio allo
Sub-surface crack networks in areas of altered microstructure are a common cause for bearing failures. Due to its appearance under light microscopy, the damage pattern is referred to as White Etching Cracks (WEC). The root causes leading to the formation
Thickener formulation plays a significant role in the performance characteristics of grease. The polyurea greases (PUGs) were synthesized using mineral oil (500SN) as the base oil, and by regulating the reaction of diphenylmethane diisocyanate (MDI) and d
The microstructure, mechanical and micro/nano-tribological properties of the 60NiTi film annealed at different temperature were investigated. The results reveal that annealing as-deposited 60NiTi film at 300, 375, and 600 ℃ for 1 h leads to structural rel
In the glass molding process, the sticking reaction and fatigue wear between the glass and mold hinder the service life and functional application of the mold at the elevated temperature. To improve the chemical inertness and anti-friction properties of t
The movement pattern of ellipsoidal nanoparticles confined between copper surfaces was examined using a theoretical model and molecular dynamics simulation. Initially, we developed a theoretical model of movement patterns for hard ellipsoidal nanoparticle