论文部分内容阅读
针对神经网络的一些缺陷,研究神经网络基于粒子群优化的学习算法,将粒子群优化算法用于RBF神经网络的学习训练。提出了一种基于粒子群优化(PSO)算法的径向基(RBF)网络参数优化算法,首先利用减聚类算法确定网络径向基函数中心的个数,再用PSO算法优化径向基函数的中心及宽度,最后用PSO算法训练隐含层到输出层的网络权值,找到神经网络权值的最优解,以达到优化神经网络学习的目的。最后,通过一个实验与最小二乘法优化的神经网络进行了比较,验证了算法的有效性。