论文部分内容阅读
针对常规RBF神经网络在铁路客运量预测中存在的收敛速度慢、易陷入局部极小等缺陷,提出一种基于混沌粒子群优化RBF神经网络算法,实现对RBF神经网络参数进行优化,并对我国1985年-2008年铁路客运量数据进行仿真实验。仿真结果表明,该算法很好地解决常规RBF神经网络参数优化问题,提高了铁路客运量预测精度,预测结果对铁路企业的决策有更加实用的参考价值。