论文部分内容阅读
给出了当m=2~(k_1)+2~(k_2)+…2~(k_j)(j≥2),k_j>0,k_i≥k_(i+1)+2)时,(m—2)—截短Hamming码的重量分布,并证明,对任意m<2~(n-1),m—截短Hamming码的重量分布点个数不大于4n。
(M-2) is given when m = 2 ~ (k_1) + 2 ~ (k_2) + ... 2 ~ (k_j) (j≥2), k_j> 0, k_i≥k_ (i + 1) 2) - the weight distribution of the truncated Hamming code, and prove that for any m <2 ~ (n-1), the number of weight distribution points of the m-truncated Hamming code is not more than 4n.