论文部分内容阅读
In this paper, a hybrid finite-difference and finite-volume numerical scheme is developed to solve the 2-D Boussinesq equations. The governing equations are the extended version of Madsen and Sorensen’s formulations. The governing equations are firstly rearranged into a conservative form. The finite volume method with the HLLC Riemann solver is used to discretize the flux term while the remaining terms are discretized by using the finite difference method. The fourth order MUSCL-TVD scheme is employed to reconstruct the variables at the left and right states of the cell interface. The time marching is performed by using the explicit second-order MUSCL-Hancock scheme with the adaptive time step. The developed model is validated against various experimental measurements for wave propagation, breaking and runup on three dimensional bathymetries.