基于改进型的非局部均值滤波算法在医学图像处理中的研究与应用

来源 :计算机应用与软件 | 被引量 : 0次 | 上传用户:blueskygx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
常规非局部均值算法易受噪声对图像的自相似度计算精度的影响,去噪结果对原始图像的边缘细节信息损伤较多。采用改进的Facet算子提取图像的边缘特征,根据图像内部像素分布情况,在不同的区域采用不同的自相似度计算方法,设置一种变尺寸的搜索窗口,最大限度地搜寻相似性邻域,降低噪声对自相似度计算精度的影响,有效保持图像边缘信息。数据测试结果表明,改进的非局部均值滤波算法能够有效保持边缘纹理信息,去噪效果要优于常规非局部均值滤波算法。
其他文献
当前消化道胶囊内镜图像识别算法存在两个局限,一是要对有差别的病灶设计具体的特征检测算法;二是通过深度学习开展迁移学习时,原训练数据与胶囊内镜图像存在较大差异。因此,提出一种小型通用的基于神经网络与特征融合的胶囊内镜图像识别模型。对图像分离G通道、Log变换和直方图均衡化预处理;采用三个相同卷积神经网络分别对三种预处理后的图像提取特征;采用Bagging算法进行特征融合与识别。对Kvasir数据集的
针对动态未知环境下多智能体多目标协同问题,为实现在动态未知环境下多个智能体能够同时到达所有目标点,设计函数式奖励函数,对强化学习算法进行改进。智能体与环境交互,不断重复"探索-学习-决策"过程,在与环境的交互中积累经验并优化策略,在未预先分配目标点的情况下,智能体通过协同决策,能够避开环境中的静态障碍物和动态障碍物,同时到达所有目标点。仿真结果表明,该算法相比现有多智能体协同方法的学习速度平均提高
针对以R-CNN展开的目标检测速度慢,传统的SSD算法在检测小目标精度不高的问题,提出一种改进的SSD算法。该算法提出轻量级网络融合+层级特征融合构建新的金字塔特征层来解决SSD对小目标识别率低的问题。将卷积前后的特征进行轻量级网络融合,形成新的金字塔特征层,对形成的特征层进行层级特征融合,形成最终的金字塔特征层,在最终的金字塔特征层上执行目标检测任务。在PASCAL-VOC2007的训练集和验证