论文部分内容阅读
模糊神经网络和SARIMA模型分别对非线性和线性时间序列有很好的预测能力,但在实际应用中大多数序列并非稳定、单纯线性或非线性的。为了提高预测精度,提出了一种基于T-S模糊神经网络与SARIMA结合的时间序列预测模型。针对悉尼航班乘客收入数据给出了三种混合模型,并与模糊神经网络、支持向量机、SARIMA和BP神经网络四种单独模型进行比较。实验结果表明,从预测精度和参数选择方面来看,所给模型是有效的。