论文部分内容阅读
We report the transformation of a linear electro-optically tunable non-phase-matched second-order nonlinear process into a cascaded second-order nonlinear process in a bulk KTP crystal to generate the effect of electrooptically tunable Kerr-type nonlinearity. By applying an electric field on the x–y plane, parallel to the z-axis of the crystal, phase mismatch is created, which introduces a nonlinear phase shift between the launched and reconverted fundamental waves from the generated second harmonic wave. Due to the nonuniform radial intensity distribution of a Gaussian beam, a curvature will be introduced into the fundamental wavefront, which focuses or defocuses the incident beam while propagating through the crystal.
We report the transformation of a linear electro-optically tunable non-phase-matched second-order nonlinear process into a cascaded second-order nonlinear process in a bulk KTP crystal to generate the effect of electrooptically tunable Kerr-type nonlinearity. By applying an electric field on the x-y plane, parallel to the z-axis of the crystal, phase to mismatch is created, which introduces a nonlinear phase shift between the launched and reconverted fundamental waves from the generated second harmonic wave. Due to the nonuniform radial intensity distribution of a Gaussian beam, a curvature will be introduced into the fundamental wavefront, which focuses or defocuses the incident beam while propagating through the crystal.