论文部分内容阅读
The TIME-IGGCAS (Theoretical Ionospheric Model of the Earth in Institute of Ge- ology and Geophysics, Chinese Academy of Sciences) has been developed re- cently on the basis of previous works. To test its validity, we have made compari- sons of model results with other typical empirical ionospheric models (IRI, NeQuick-ITUR, and TItheridge temperature models) and multi-observations (GPS, Ionosondes, Topex, DMSP, FORMOSAT, and CHAMP) in this paper. Several conclu- sions are obtained from our comparisons. The modeled electron density and elec- tron and ion temperatures are quantitatively in good agreement with those of em- pirical models and observations. TIME-IGGCAS can model the electron density variations versus several factors such as local time, latitude, and season very well and can reproduce most anomalistic features of ionosphere including equatorial anomaly, winter anomaly, and semiannual anomaly. These results imply a good base for the development of ionospheric data assimilation model in the future. TIME-IGGCAS underestimates electron temperature and overestimates ion tem- perature in comparison with either empirical models or observations. The model results have relatively large deviations near sunrise time and sunset time and at the low altitudes. These results give us a reference to improve the model and enhance its performance in the future.
The TIME-IGGCAS (Theoretical Ionospheric Model of the Earth in Institute of Geology and Geophysics, Chinese Academy of Sciences) has been developed re- cently on the basis of previous works. To test its validity, we have made compari- sons of model results with other typical empirical ionospheric models (IRI, NeQuick-ITUR, and TItheridge temperature models) and multi-observations (GPS, Ionosondes, Topex, DMSP, FORMOSAT, and CHAMP) in this paper. Several conclu- sions are obtained from our comparisons. The modeled electron density and elec- tron and ion temperatures are quantitatively in good agreement with those of em- pirical models and observations. TIME-IGGCAS can model the electron density variations versus several factors such as local time, latitude, and season very well and can reproduce most anomalistic features of ionosphere including equatorial anomaly, winter anomaly, and semiannual anomaly. These results imply a good base for the development of ionospheric data assimilati on model in the future. TIME-IGGCAS underestimates electron temperature and overestimates ion tem- perature in comparison with either either empirical models or observations. The model results have relatively low deviations near sunrise time and sunset time and at the low altitudes. These results give us a reference to improve the model and enhance its performance in the future.