论文部分内容阅读
以膜孔径、操作压力、滤过温度为输入变量,以红芪酶解提取液在不同超滤条件下的芒柄花素保留率为输出变量,采用L-M算法优化网络参数,建立适用于纤维性根茎药材超滤的芒柄花素保留率BP神经网络预测模型,并对模型的预测性能和适用性及最优工艺条件和各条件对芒柄花素保留率的影响进行考察。该模型对红芪和黄芪酶解提取液超滤后的芒柄花素保留率预测的平均误差率分别为1.78%和1.92%。最优超滤工艺条件为:膜孔径100 nm,操作压力0.15 Mpa,滤过温度45℃。各条件对芒柄花素保留率的影响大小为:滤过温度〉膜孔径〉操作