论文部分内容阅读
In considering the characteristic of a rudder,the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties.In order to solve the uncertainties in the ship heading control,specifically the controller singular and paramount re-estimation problem,a new multiple sliding-mode adaptive fuzzy control algorithm was proposed by combining Nussbaum gain technology,the approximation property of fuzzy logic systems,and a multiple sliding-mode control algorithm.Based on the Lyapunov function,it was proven in theory that the controller made all signals in the nonlinear system of unmatched uncertain ship motion uniformly bounded,with tracking errors converging to zero.Simulation results show that the demonstrated controller design can track a desired course fast and accurately.It also exhibits strong robustness peculiarity in relation to system uncertainties and disturbances.
In considering the characteristic of a rudder, the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties. In order to solve the uncertainties in the ship heading control, specifically the controller singular and paramount re -estimation problem, a new multiple sliding-mode adaptive fuzzy control algorithm was proposed by combining Nussbaum gain technology, the approximation property of fuzzy logic systems, and a multiple sliding-mode control algorithm. Based on the Lyapunov function, it was proven in theory that the controller made all signals in the nonlinear system of unmatched custer motion uniformly bounded, with tracking errors converging to zero. Simulation results show that demonstrated controller design can track a desired course fast and accurately. It also exhibits strong robustness peculiarity in relation to system uncertainties and disturbances.