论文部分内容阅读
Although the biochemical dissection of parasitoid-host interactions is becoming well characterized, the molecular knowledge concerning them is minimal. In order to understand the molecular bases of the host immune response to parasitoid attack, we explored the response of Papilio xuthus parasitized by the endoparasitic wasp Pteromalus puparum using proteomic approach. By examining the differential expression of plasma proteins in the parasitized and unparasitized host pupae by two-dimensional (2D) electrophoresis, 16 proteins were found to vary in relation to parasitization compared with unparasitized control samples. All of them were submitted to identification by mass spectrometry coupled with a database search. The modulated proteins were found to fall into the following functional groups: humoral or cellular immunity, detoxification, energy metabolism, and others. This study contributes insights into the molecular mechanism of the relationships between parasitoids and their host insects.
Although the biochemical dissection of parasitoid-host interactions is becoming well characterized, the molecular knowledge concerning them is minimal. In order to understand the molecular bases of the host immune response to parasitoid attack, we explored the response of Papilio xuthus parasitized by the endoparasitic wasp Potsomalus puparum using proteomic approach. By examining the differential expression of plasma proteins in the parasitized and unparasitized host pupae by two-dimensional (2D) electrophoresis, 16 proteins were found to vary in relation to parasitization compared with unparasitized control samples. All of them were submitted to identification by mass spectrometry coupled with a database search. The modulated proteins were found to fall into the following functional groups: humoral or cellular immunity, detoxification, energy metabolism, and others. This study contributes insights into the molecular mechanism of the relationships between parasitoids and their host in sects.