论文部分内容阅读
Alcohol transformation to transportation fuel-range hydrocarbon over HZSM-5 (SiO2/Al2O3=30) catalyst was studied at 360C and 300 psig. Product distributions and catalyst life were compared between methanol, ethanol, 1-propanol and 1-butanol as a feed. The catalyst life for 1-propanol and 1-butanol was more than double compared with that for methanol and ethanol. For all the alcohols studied, the product distributions (classified to paraffin, olefin, naphthene, aromatic and naphthalene compounds) varied with time on stream (TOS). At 24 h TOS, liquid product from 1-propanol and 1-butanol transformation primarily contains higher olefin compounds. The alcohol transformation process to higher hydrocarbon involves a complex set of reaction pathways such as dehydration, oligomerization, dehydrocyclization and hydrogenation. Compared with ethylene generated from methanol and ethanol, oligomerization of propylene and butylene has a lower activation energy and can readily take place on weaker acidic sites. On the other hand, dehydrocyclization of the oligomerized products of propylene and butylene to form the cyclic compounds requires the sites with stronger acid strength. Combination of the above mentioned reasons are the primary reasons for olefin rich product generated in the later stage of the time on stream and for the extended catalyst life time for 1-propanol and 1-butanol compared with methanol and ethanol conversion over HZSM-5.
Alcohol distribution to transportation fuel-range hydrocarbon over HZSM-5 (SiO2 / Al2O3 = 30) catalyst was studied at 360C and 300 psig. Product distributions and catalyst life were compared between methanol, ethanol, 1-propanol and 1-butanol as a feed For all the alcohols studied, the product distributions (classified to paraffin, olefin, naphthene, aromatic and naphthalene compounds) varied with time on stream (TOS). At 24 h TOS, liquid product from 1-propanol and 1-butanol species with higher olefin compounds. The alcohol transformation process to higher hydrocarbons involves a complex set of reaction pathways such as dehydration, oligomerization, dehydrocyclization and hydrogenation. Compared with ethylene generated from methanol and ethanol, oligomerization of propylene and butylene has a lower activation energy and can readily take place on weaker ac idic sites. On the other hand, dehydrocyclization of the oligomerized products of propylene and butylene to form the cyclic compounds requires the sites with stronger acid strength. Combination of the above mentioned reasons are the primary reasons for olefin rich product generated in the later stage of the time on stream and for the extended catalyst life time for 1-propanol and 1-butanol compared with methanol and ethanol conversion over HZSM-5.