论文部分内容阅读
近年来,深度学习在计算机视觉领域取得了巨大的突破,其背后是利用大量标签数据对深度网络进行监督训练,而标注大规模数据集非常昂贵且十分耗时。针对大规模数据集标注问题,苹果公司的Shrivastava团队希望借助现有的计算机仿真技术以及对抗训练的方法,实现仿真图像的无监督学习,从而避免昂贵的图像标注过程。该团队在对抗网络的基础上提出3个创新点:(1)自正则项;(2)局部对抗损失;(3)使用历史生成图片更新判别器,使得生成真实化图片的同时保留输入图像特征。实验结果展示该方法可以生成高度真实化的图片。研究者通