论文部分内容阅读
传统的深度置信网络(DBNs)训练过程采用重构误差作为RBM网络的评价指标,它能在一定程度上反映网络对训练样本的似然度,但它并不是可靠的。而最大信息系数(MIC)能反映两个属性间的相关度,保留相关度较大的属性,且MIC较稳健,不易受异常值的影响,可作为网络评价指标。故提出一种基于最大信息系数(MIC)的深度置信网络方法,一方面用MIC对数据进行降维预处理,提高数据与网络的拟合度,降低网络分类误差;另一方面将MIC作为网络评价标准,改进重构误差的不可靠性。分别利用传统方法与基于MIC的深度置信网络方法