论文部分内容阅读
研究了Littlewood—Paley g函数在加权Herz空间上的弱有界性。利用加权Herz空间的分解理论及几个不等式,证明了若ω1,ω2∈A1,当0〈α≤n(1-1/q)时,gφ是Kq^α,p(ω1,ω2)到WKq^α,p(ω1,ω2)上的有界算子,并且当0〈α〈n(1—1/q)时,gφ在加权Herz空间上具有强有界性。此结果丰富了Littlewood—Paley g函数的有界性理论。