论文部分内容阅读
在纤维图像自动识别系统中,分割出完整连续的纤维是纤维特征分析的必要前提.针对纤维图像的背景和前景灰度区别不大、光照不均对图像的影响等特征,提出融合K-means和GVF(Gradient Vector Flow)Snake模型的纤维图像分割算法.该算法以提取完整连续的纤维轮廓为标准,利用K-means聚类分割结果为GVF Snake模型的初始轮廓线,并对得到的存在毛刺的轮廓结果采用轮廓跟踪去除毛刺,从而得到完整连续的单根纤维图像.该算法不仅能有效解决传统图像分割方法对纤维图像分割的不连续问题,而且能