The latest development on amine functionalized solid adsorbents for post-combustion CO2 capture:Anal

来源 :中国化学工程学报(英文版) | 被引量 : 0次 | 上传用户:yyj55555
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Global warming and associated global climate change have led to serious efforts towards reducing CO2 emissions through the CO2 capture from the major emission sources.CO2 capture using the amine func-tionalized adsorbents is regard as a direct and effective way to reducing CO2 emissions due to their large CO2 adsorption amount,excellent CO2 adsorption selectivity and lower energy requirements for adsor-bent regeneration.Moreover,large number of achievements on the amine functionalized solid adsorbent have been recorded for the enhanced CO2 capture in the past few years.In view of this,we review and analyze the recent advances in amine functionalized solid adsorbents prepared with different supporting materials including mesoporous silica,zeolite,porous carbon materials,metal organic frameworks(MOF)and other composite porous materials.In addition,amine functionalized solid adsorbents derived from waste resources are also reviewed because of the large number demand for cost-effective carbon dioxide adsorbents and the processing needs of waste resources.Considering the importance of the stability of the adsorbent in practical applications,advanced research in the capture cycle stability has also been summarized and analyzed.Finally,we summarize the review and offer the recommendations for the development of amine-based solid adsorbents for carbon dioxide capture.
其他文献
针对金属注射成型(MIM)工业生产零件由于缺陷细微导致的肉眼识别率低和人力资源耗费严重的问题,设计了一种基于卷积神经网络(CNN)的缺陷检测识别方法。利用迁移学习解决当前由于训练数据少而导致识别率低的问题,并提出了一种轻量化特征重用网络模型,对MIM工艺生产的小模数齿轮进行缺陷检测。实验结果表明:训练模型在MIM齿轮缺陷检测的准确率达到98%以上,可对零件实现快速、准确的检测,该检测识别技术可以应用于同类的零件制造业完成分类和检测任务,在工业上具有重要的研究价值和实践意义。
在基于可穿戴传感器的人体行为识别领域中,提取原始数据的有效特征和建立合适的分类模型是提高识别准确率的关键。针对上述问题,提出一种改进的深度卷积神经网络(DCNN)模型,在经典的DCNN模型中增加了信号融合单元,并提出一种将时间序列转换成单通道行为图片的方法,由加速度、角速度和俯仰角信号构成的行为图片在经过信号融合单元处理后,可实现跨通道的信息融合,然后提取行为图片的张量特征,实现对行走、奔跑、坐下
为了适应精准畜牧业理念,提出了一种改进的K-SVD算法用于牛的个体身份识别。在K-SVD算法基础上,更改了稀疏编码阶段字典原子的选择方式,使算法更加适用于图像分类问题。构造了包含20头牛的牛脸图像数据集IMCFR20,利用该数据集分析稀疏度与字典原子数对识别效果的影响。实验结果表明:改进后的算法识别率达到90%以上,识别效果有了较大提升,为利用图像进行牛的个体识别问题提供了可行的方案。
为了改善井下人员定位精度不足的问题,提出了一种基于巷道分区和鸡群优化(CSO)的井下无线传感器网络(WSNs)定位算法。将相邻两个锚节点间的区域等分,按照这些区域接收到附近锚节点的接收信号强度指示(RSSI)值的大小,对其进行等级标记,并根据未知节点接收到的RSSI值判断其所属区域,最后在该区域内利用改进的CSO算法通过迭代寻优确定未知节点的精确位置。仿真结果表明:所提算法在锚节点密度、测距误差等
Coal is of utmost importance for the energy and chemical engi-neering fields of China,as it contributes to 56.8% of primary energy supply in 2020 in the country.\"On the one hand,coal is the major source of energy and resources for its rich endowment in
期刊
Accurately predicting distributions of concentration and temperature field in fixed-bed column is essential for designing adsorption processes.In this study,a two-dimensional (2D),axisymmetric,nonisothermal,dynamic adsorption model was established by coup
在分析国内舰船柴油机性能试验现状基础上,提出了舰船柴油机性能验证试验与性能鉴定试验的一体化策略;研究了重点试验项目总体技术层面的考核要素,以及试验准备、安全管理和装备保障要求、旨在为提升舰船柴油机整机性能试验能力提供参考。
在光伏领域,光强以外的高维时间序列数据如何聚类,时间序列聚类是否具有明确的物理意义,目前还没有研究。时间序列聚类是一种从复杂、海量的时间序列数据集中提取有价值信息的新技术。光伏电站在不同工况下运行,统计电流、电压、温度和辐照度等时间序列数据,然后通过时序DBSCAN算法对时间序列数据聚类。实验结果表明:未知工况与聚类结果之间确实存在物理关联。未知工况与时间序列簇之间物理意义的发现,将推动光伏发电系统监测、预测和故障诊断的智能技术向前发展。
It is important to develop the advanced coal to chemicals industry (ACCI) against a backdrop of coal-based energy structures,excessive imported oil and natural gas,and strict environmental con-straints in China.In this study,the technology and industry of
High-energy-density (HED) fuel is specifically pivotal to improve the performance of volume-limited aircrafts.The widely used HED fuels composed of polycyclic hydrocarbons are mainly synthesized from petroleum feedstocks.In order to ensure abundant supply