论文部分内容阅读
预测陕西洛惠渠灌区地下水动态变化情况,在综合分析了各种地下水动态研究方法的基础上,提出了基于支持向量机和改进的BP神经网络模型的灌区地下水动态预测方法,并在MATLAB中编制了相应的计算机程序,建立了相应的地下水动态预测模型。以灌区多年实例数据为学习样本和测试样本,比较了两种模型的地下水动态预测优劣性。研究表明,支持向量机模型和BP网络模型在样本训练学习过程中都具较高的模拟精度,而在样本学习阶段,支持向量机的预测精度明显优于BP网络,可以很好的描述地下水动态复杂的耦合关系。支持向量机方法切实可行,更加适合