二硫化钼薄膜的制备和性质研究

来源 :半导体光电 | 被引量 : 0次 | 上传用户:oceanspring
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于第一性原理,应用Materials Studio软件对2H-MoS2的能带结构、态密度、光学特性等进行了模拟研究.结果 表明:MoS2是间接带隙半导体,禁带宽度约为1.1275 eV;材料在紫外至可见光波段具有一定吸收,吸收系数随波长增加而减小,拉曼光谱在375和400 cm-1分别出现了E2g1和A1g两个振动模式.在39.5°,33.5°等位置处出现了(103),(101)等晶面的衍射峰.采用磁控溅射的方法,在石英衬底上制备了不同厚度的MoS2薄膜,发现该薄膜具有(101)择优取向,在375和407 cm-1处也分别出现了E2g1和A1g两个拉曼峰.随着厚度的增加,薄膜在可见光波段透过率下降,光学带隙向长波长移动,模拟结果与实验结果基本吻合.
其他文献
提出了一种使用固定频率窄线宽激光器作为干涉光源的闭环谐振式光纤陀螺系统.该系统利用相位调制器对干涉光进行移频控制,完成对谐振腔逆时针方向谐振频率的跟踪和锁定.建立了陀螺系统Simulink模型并仿真研究了不同速率点下的陀螺输出特性,结果表明,±200(°)/s速率范围内逆时针谐振频率锁定时间小于15 ms,陀螺标度因数非线性为2.41×10-4.与采用传统频率可调谐窄线宽激光器的闭环谐振式光纤陀螺系统相比,两者锁频时间和标度因数非线性基本一致.该研究为低成本闭环谐振式光纤陀螺系统的实现提供了理论和数据支撑
基于构形理论和多物理场耦合数值计算方法,建立了自然对流条件下均匀产热的多芯片组件模型,给定印刷电路板面积和芯片总占地面积为约束条件,分别以最高温度、最大应力和最大形变为优化目标,以芯片个数及芯片长宽比为设计变量,研究了芯片布局演化对系统性能的影响.结果 表明:不同优化目标下,最优构形均为芯片长宽比为2.1的8芯片布局方式,多芯片组件的最高温度、最大应力和最大形变分别最多可降低16.5%,28.3%和26.9%.对芯片个数和芯片长宽比双自由度的优化效果要明显优于仅对芯片长宽比的单自由度优化.
采用双靶共溅射的方法制备了光电性能较好的掺Al氧化锌(AZO)薄膜,利用X射线衍射仪、霍尔测试仪、SEM等多种技术手段研究了不同的Al溅射功率和快速退火条件对AZO薄膜的影响,发现AZO薄膜在Al溅射功率为15W、退火温度为400℃时性能最佳.当A1溅射功率为15W时,其电阻率最低为6.552×10-4 Ω·cm,可见光波段(400~700 nm)平均透过率超过92%.随着Al溅射功率的增大,可见光波段的透过率逐渐减小,红外波段(2.5~20 μm)的透过率逐渐增大,最大为40%.
针对基于物理气相输运法的碳化硅(SiC)单晶生长系统,考虑对流换热的影响建立了传热与传质数学模型,并采用数值模拟的方法研究了其生长系统内的温度场与气相流场.研究表明:坩埚内温度、温度梯度以及加热效率随线圈匝间距与线圈直径的增加而逐渐降低.旋转坩埚可有效解决因线圈螺旋形状而导致的温度场不均匀性.通过不断调整线圈与坩埚之间的相对高度,可保证高品质晶体生长所需的最优温度场环境.此外,坩埚内径尺寸的增加,会加剧其内部自然对流效应.
设计了一种用于产生超连续谱的新型高非线性光子晶体光纤结构,其光纤包层空气孔大小从内到外呈凹型分布,将最内层空气孔直径d1和最外两层空气孔直径d5和d6设置为较大值以分别获得高非线性和低损耗特性;为了降低光纤制作难度,将第二至第四层空气孔直径设置为相同.基于多极法分析了光纤包层空气孔间距Λ和各层空气孔直径对色散、非线性系数和损耗的影响规律,并设计了最佳结构参数.仿真结果表明,该结构光纤双零色散点分别为798和1260 nm,色散极大值为71.6 ps·nm-1·km-1,在0.72~1.3 μm波长范围内,
采用飞秒激光对AlN陶瓷进行表面加工实验,分析了激光能量密度和扫描速度对加工表面形貌和尺寸的影响,优选出兼顾加工质量与效率的工艺参数区间,即能量密度10~14 J/cm2,扫描速度20~30 mm/s.基于此,以螺旋扫描轨迹于AlN陶瓷上进行制孔应用,成功实现了无崩边及微裂纹等缺陷的圆孔、方孔及跑道孔加工.该研究验证了飞秒激光加工高质量多孔型的可行性,推动了硬脆材料激光制孔技术在半导体功率器件领域的应用.
采用微分算子法,理论研究了一维热压电半导体梁在横向力作用下的静态弯曲问题,得到了位移、电势、载流子、温度以及剪力、弯矩、电位移和电流密度等物理场的解析解,并分析了温度对n型ZnO压电半导体悬臂梁力电热耦合性能的调控作用.研究结果表明:温度能显著影响压电半导体梁的力电场分布,造成电势、载流子、电场和电位移在高温区域发生显著变化,而对于位移、剪力和弯矩影响较小.该温度调控效果主要是由热释电效应产生的极化电荷引起的.
由于硅通孔互连(Through Silicon Via,TSV)三维封装内部缺陷深藏于器件及封装内部,采用常规方法很难检测.然而TSV三维封装缺陷在热-电激励的情况下可表现出规则性的外在特征,因此可以通过识别这些外在特征达到对TSV三维封装内部缺陷进行检测的目的 .文章利用理论与有限元仿真相结合,对比了正常TSV与典型缺陷TSV的温度分布,发现了可供缺陷识别的显著差异.分析结果表明,在三种典型缺陷中,含缝隙TSV与正常TSV温度分布差异最小;其次为底部空洞TSV,差异最大的为填充缺失TSV.由此可知,通过
以包含碳纳米颗粒(CNP)的油墨、碳纳米管(CNT)和TiN纳米粒子为原料,采用高压静电喷涂技术在铝基底上沉积了CNT/CNP-TiN涂层.研究了静电电压、喷涂高度和喷涂量对涂层光吸收性能的影响.结果 表明,静电电压为9 kV、喷涂高度为30 mm和喷涂量为35μL时制备的CNT/CNP-TiN涂层光吸收性能最佳,在400~1400 nm波长范围内的平均吸收率高达97.1%.TiN纳米粒子、CNT和CNP搭建成蜂窝状团簇,团簇间形成的几百纳米到微米级的光学腔以及团簇内的几十到几百纳米的光学腔可捕获不同波段
文章对柱面微透镜阵列纳米压印中用到的精密模具的制作过程开展了仿真分析和实验研究.超精密切削技术是制作精密压印模具的有效手段之一.基于Johnson-Cook本构模型,采用有限元分析方法模拟了超精密切削过程中切削参数与切削力之间的关系,获得了优选的切削参数.实验结果表明,采用优选后的切削参数进行柱面微透镜阵列模具切削能够获得良好的切削效果.切削后模具的面形精度RMS值达到19 nm,表面粗糙度Sq达到4 nm.