【摘 要】
:
设计了一种用于产生超连续谱的新型高非线性光子晶体光纤结构,其光纤包层空气孔大小从内到外呈凹型分布,将最内层空气孔直径d1和最外两层空气孔直径d5和d6设置为较大值以分别获得高非线性和低损耗特性;为了降低光纤制作难度,将第二至第四层空气孔直径设置为相同.基于多极法分析了光纤包层空气孔间距Λ和各层空气孔直径对色散、非线性系数和损耗的影响规律,并设计了最佳结构参数.仿真结果表明,该结构光纤双零色散点分别为798和1260 nm,色散极大值为71.6 ps·nm-1·km-1,在0.72~1.3 μm波长范围内,
【机 构】
:
郑州西亚斯学院电子信息工程学院,郑州451150;北京交通大学理学院,北京100044
论文部分内容阅读
设计了一种用于产生超连续谱的新型高非线性光子晶体光纤结构,其光纤包层空气孔大小从内到外呈凹型分布,将最内层空气孔直径d1和最外两层空气孔直径d5和d6设置为较大值以分别获得高非线性和低损耗特性;为了降低光纤制作难度,将第二至第四层空气孔直径设置为相同.基于多极法分析了光纤包层空气孔间距Λ和各层空气孔直径对色散、非线性系数和损耗的影响规律,并设计了最佳结构参数.仿真结果表明,该结构光纤双零色散点分别为798和1260 nm,色散极大值为71.6 ps·nm-1·km-1,在0.72~1.3 μm波长范围内,色散斜率小于0.81 ps·km-1·nm-2,780 nm处的非线性系数为153.2 W-1·km-1,800 nm处损耗为3.1×10-3 dB/km,性能相比市场同类型光子晶体光纤更具优势.
其他文献
利用高质量自支撑GaN衬底,通过外延方法制备了垂直结构的GaN基p-i-n型二极管结构.通过对材料结构、杂质浓度分布以及对器件整流特性的研究,探究了影响垂直结构器件特性的关键因素.结果 表明,在同质外延的制备过程中,衬底表面的粗糙程度将使制备的环形结构具有不规则形状,这种不规则电极对垂直结构器件的性能将产生不利影响;此外,多种杂质在界面处聚集,进而形成平面漏电通道,是降低器件耐压值的主要因素.
设计了一款用于高速图像传感器的可自调节、加速补偿CMOS电荷泵锁相环电路,通过在传统锁相环电路拓扑中,附加“双模式”逻辑时控的、低功耗加速充电补偿模块,实现了锁定时间与功耗的双重优化.基于180 nm/1.8 V CMOS工艺完成锁相环的电路设计和性能仿真,结果表明,基于所提出的加速补偿方案,改进后的锁相环可有效满足图像传感器对低功耗、高速、高频和低噪声输出特性的需求.在输入频率为1 GHz的参考信号时,压控振荡器可达到0.55~2.82 GHz,即2.27 GHz的频率范围,相位噪声为-98.149 d
基于CO2红外气体传感器微型化、智能化、低功耗的发展要求,创新性地提出一种中心温度为407℃的CO2检测用微电子机械系统(MEMS)红外光源芯片.采用X型悬空桥式微热板结构,内部发热区域以环形走线的钨(W)电极为加热丝,以SiO2和Si3N4双层薄膜作为机械支撑保护层,可防止钨电阻丝氧化并提高寿命.电热耦合有限元仿真分析显示,该光源芯片具有发热区温度分布均匀、热响应时间短、功耗低的优点.采用10.16 cm(4 inch)MEMS工艺完成了芯片的流片制造.测试结果表明,该光源芯片在24 ms内即可快速升温
晶圆低温直接键合技术与传统键合方式相比具有对晶片及器件损伤小、无中介层污染、无需外部电场辅助等优势,在功率型半导体光电及电力电子器件、大功率固体激光器、MEMS、光电集成等领域具有巨大的应用潜力.文章从低温直接键合技术的发展历程入手,重点介绍了湿法疏水键合、湿法亲水键合和等离子体活化键合的物理化学机制.系统阐述了低温直接键合的工艺流程和键合强度的表征方法,探讨了低温直接键合的技术发展趋势,并对低温直接键合工艺的改善和创新应用拓展进行了展望.
构建了一种激光二极管(LD)侧面单向泵浦激光模块的理论模型.综合光线追迹和有限元仿真方法,推导了该模型下泵浦效率及晶体内光场分布均匀性的计算公式,数值分析了LD切向位移量、径向角度偏离度及晶体吸收系数等因素对泵浦效率和光场分布均匀性的影响.研究结果表明:随着吸收系数的增加,光场分布的均匀性呈现逐渐下降趋势;通过优化LD切向位移量和径向角度偏离量,仿真获得了高达93%的泵浦效率.研究成果对高功率LD侧面单向泵浦激光模块的优化设计和实验研究具有一定的参考价值.
基于二维三角晶格和正方晶格光子晶体分别设计了六端口和八端口光子晶体环行器.环行器由硅介质柱光子晶体波导和铁氧体介质柱缺陷构成.所设计的六端口环行器每个波导连接处只有一个铁氧体材料,能够有效降低损耗;八端口环行器波导连接处添加了多个铁氧体材料可有效提高隔离度.使用有限元法对电磁波在环行器中的传输进行了仿真验证.计算结果表明,六端口环行器各端口的隔离度达到22~38 dB;八端口环行器各端口的隔离度达到21.7~40.5 dB.设计的多端口环行器具有结构简单紧凑、隔离度高、损耗低的优点.
提出了一种使用固定频率窄线宽激光器作为干涉光源的闭环谐振式光纤陀螺系统.该系统利用相位调制器对干涉光进行移频控制,完成对谐振腔逆时针方向谐振频率的跟踪和锁定.建立了陀螺系统Simulink模型并仿真研究了不同速率点下的陀螺输出特性,结果表明,±200(°)/s速率范围内逆时针谐振频率锁定时间小于15 ms,陀螺标度因数非线性为2.41×10-4.与采用传统频率可调谐窄线宽激光器的闭环谐振式光纤陀螺系统相比,两者锁频时间和标度因数非线性基本一致.该研究为低成本闭环谐振式光纤陀螺系统的实现提供了理论和数据支撑
基于构形理论和多物理场耦合数值计算方法,建立了自然对流条件下均匀产热的多芯片组件模型,给定印刷电路板面积和芯片总占地面积为约束条件,分别以最高温度、最大应力和最大形变为优化目标,以芯片个数及芯片长宽比为设计变量,研究了芯片布局演化对系统性能的影响.结果 表明:不同优化目标下,最优构形均为芯片长宽比为2.1的8芯片布局方式,多芯片组件的最高温度、最大应力和最大形变分别最多可降低16.5%,28.3%和26.9%.对芯片个数和芯片长宽比双自由度的优化效果要明显优于仅对芯片长宽比的单自由度优化.
采用双靶共溅射的方法制备了光电性能较好的掺Al氧化锌(AZO)薄膜,利用X射线衍射仪、霍尔测试仪、SEM等多种技术手段研究了不同的Al溅射功率和快速退火条件对AZO薄膜的影响,发现AZO薄膜在Al溅射功率为15W、退火温度为400℃时性能最佳.当A1溅射功率为15W时,其电阻率最低为6.552×10-4 Ω·cm,可见光波段(400~700 nm)平均透过率超过92%.随着Al溅射功率的增大,可见光波段的透过率逐渐减小,红外波段(2.5~20 μm)的透过率逐渐增大,最大为40%.
针对基于物理气相输运法的碳化硅(SiC)单晶生长系统,考虑对流换热的影响建立了传热与传质数学模型,并采用数值模拟的方法研究了其生长系统内的温度场与气相流场.研究表明:坩埚内温度、温度梯度以及加热效率随线圈匝间距与线圈直径的增加而逐渐降低.旋转坩埚可有效解决因线圈螺旋形状而导致的温度场不均匀性.通过不断调整线圈与坩埚之间的相对高度,可保证高品质晶体生长所需的最优温度场环境.此外,坩埚内径尺寸的增加,会加剧其内部自然对流效应.