论文部分内容阅读
Modern high performance adhesives are designed to offer an optimized balance of elasticity,toughness and plastic deformation capacity for the individual fields of application in e.g. the building and construction or transportation and vehicle industry. The long-term life prediction for adhesive joints based on laboratory tests requiring only days,weeks,or months is still a demanding challenge. Testing in practice is carried out with the intention of accelerating time dependent aging effects that may occur in a bonded joint during its service time. Initial strength values of bonded joints,such as shear or peel properties can often be obtained from the adhesive manufacturers or retrieved from literature. They are useful to compare different adhesives and to demonstrate the effect of parameters such as bond line thickness,overlap length or curing conditions,and,in some cases,the surface state. On the other hand only few data are available describing the mechanical long-term properties of adhesives related to creep and relaxation under static load conditions. Due to the nature of the polymer network of organic adhesives their viscoelastic-plastic deformation behavior is strongly time-and temperature dependent. The objective of this paper is to illustrate effective methods for investigating and predicting the creep and relaxation properties of adhesively bonded joints in the long-term region and for creating basic data for the design and engineering with adhesives.