论文部分内容阅读
背景:脑部MR图像是一种无纹理的图像,未被噪声污染的脑部MR图像的灰度值具有分片为常数的特点。因此,在聚类过程中灰度值有趋向于在同一个分割区域中相对接近的性质。目的:寻找一个能够自动分割多发性硬化症病灶的模糊C-均值改进方法,为临床对于多发性硬化症的判断提供更方便的工具。方法:考虑到脑部MR图像相邻象素属于同一分类的概率相近的特性,在迭代过程中对8邻域数据集进行滤波以降低噪声对聚类精度的影响,提出了一种改进的模糊C-均值聚类算法。就是将模糊C-均值聚类算法迭代过程中得到的灰度值看作一个数据集,用每个象素邻