论文部分内容阅读
本文用解析几何观点把“三角形三高线共点”定理作了一系列的类比推广,得到一系列有趣的结论.三角形三高线共点定理:若ΔABC三边所在的直线AB,BC,CA的斜率存在且不为零,l1,l2,l3分别是边BC,CA,AB上的高,即kl1·kBC=kl2·kAC=kl3·kAB=-1,则直线l1、l2、l3交于一点.(注:本文仅讨
In this paper, a series of analogous generalizations of the theorem of “three points and three points” are obtained by means of analytic geometry, and a series of interesting conclusions are obtained. The triangle theorem: if AB, BC, CA The slope exists and is not zero, l1, l2, l3, respectively, the edge BC, CA, AB on the high, that is, kl1 · kBC = kl2 · kAC = kl3 · kAB = -1, then the line l1, l2, l3 (Note: This article only discusses