论文部分内容阅读
数学知识的前后有很强的连续性和系统性。在小学数学教材中,大多数数学知识都有它特定的起点,即新知的生长点,教师在钻研教材时应把着力点放在新旧知识的连接点上,想办法帮助学生经历由旧知向新知的转化过程,将转化思想方法渗透其中,发展学生的思维能力。本文以计算教学为例,谈一谈在小学数学课堂教学中应如何经历算理形成过程,适时渗透转化的思想方法。
一、研读教材,理清脉络找准生长点
小学数学教材关于计算教学中运用转化思想方法的实例很多,像小数加减法、小数乘除法、异分母分数加减法、分数乘除法等等,都需要利用转化的思想方法将新知转化成已经学过的旧知来解决。在实际教学中,很多数学老师为了节省时间直接将计算的方法交给学生,然后进行操练,达到计算熟练的程度。这样,表面上看是提高了课堂教学的效率,实际上是剥夺了学生自主探究算理,获得新知的权利,使学生变成了一个不会思考,不会探究,只会机械接受知识的容器。为了避免这种现象的出现,作为数学老师必须更新观念,认真研读教材。研读数学教材,就是要分析新知往前向后的知识系统,分析学生已有知识的基础,把握住新知识的最近发展区,理清知识的来龙去脉,准确地找到新知产生的相关旧知,有效帮助学生在原有知识的基础上实现获取新知的跨越。
比如,小数加减法计算是在整数加减法的基础上教学的,在研读分析教材时应该关注这一点,教材通过引导学生利用已掌握的整数加减法的旧知迁移到小数加减法,反过来就是用转化的方法把小数加减法转化成整数加减法,即小数加减法和整数加减法在算理上是相通的,只是多了一个小数点处理的问题。这里的转化思想方法的渗透符合学生的学习心理规律。因此,准确找到新知的生长点可以有效促进学生由旧知向新知的转化,这应该成为教师课前钻研教材的重点之一。
二、创设情境,提供由旧到新的支撑点
教学时,常常会出现这样的情况,学生已经具备新知学习的知识基础,但他们自身却不能充分利用。教师不但要在学生学习新知前设法唤起旧知的重现,简单复习旧知,还要创设一定的情境,善于变化旧知的呈现方式,使之更加贴近新知,为新知学习提供巧妙的支撑。
例如,在教学小数乘整数,需要唤醒学生对乘法的意义、整数乘法等相关旧知时,没有简单直接呈现这些旧知让学生复习,而是创设了一个购物的情境,将整数乘法的几种情况包含其中。购物情境是比较简单的:出示超市情境中的四幅图(面包:4元/个 5个,火腿肠:0.8元/根 3根,进口蛇果:16元/个 12个,西瓜:2.35元/千克 3千克),组织学生自主选择其中一种食品,并根据所提供的信息,提出一个用乘法计算的数学问题。根据学生自己提出的问题,从而得到4道乘法算式。继而组织学生观察四道乘法算式,将它们分分类。这样,通过情境的创设,巧妙地将整数乘法分为一类,小数乘法分为另一类。整数乘法是过去学过的旧知,自然地对与新知有关的旧知进行了复习,这些旧知与新知学习中出现的小数转化成整数、用加法计算和把小数乘整数先看成整数乘整数计算等更为接近。实践证明,学生的旧知被充分利用后,与之相关的新知识才能水到渠成。
三、依托旧知,实现由旧到新的转化
有意义的数学学习都是在学生原有的学习基础上进行的,几乎不存在不受原有知识影响的学习。转化的思想方法很多情况下渗透在学生对旧知的正迁移过程中,旧知与新知之间的关系是垂直方向的纵向联系,依托旧知的复习,把新知顺应于原有的认知结构中,从而实现对新知的学习活动。这个获取新知的学习过程,即新知的形成过程,一定要让学生亲身经历。
例如,异分母分数加减法,依托的旧知基础是分数的意义、通分、约分和同分母分数加减法,涉及到的知识点较多,在转化的过程中,细节是很重要的,一定要提供时间和空间让学生依托旧知,经历这个由旧知到新知的转化过程,而不要直接告诉他们把异分母分数化成同分母分数进行计算,然后就进行操练,达到熟练的程度。这样的学习过程记得快忘得也快,是不符合学习规律的。
在实际教学时,通过班级黑板报版面设计的情境让学生提出问题,复习相关的旧知后,小组讨论“1/2 1/4”该怎样计算呢?出示研究提示:先独立思考,可以画一画、想一想、算一算,把自己的方法记录下来。把自己的想法在小组内交流。然后让学生汇报交流,说说是怎么想的?学生出现的三种方法逐一展示:(1)画一画。这种方法可以让学生先在实物投影上展示,让学生说说思考的过程。(2)化成小数。转化成小数,变成我们学过的知识。(3)通分。老师引导学生重点理解这一种方法。根据学生回答,板书并明确将异分母分数加法转化为同分母分数“2/4 1/4=3/4”。提出问题:为什么要通分?通分的依据是什么?通分后怎么计算?引导学生理解“2/4 1/4”的算理:分母不同,就是分数单位不同,转化成分数单位相同的分数后,就是“1个1/4加2个1/4等于3个1/4,也就是3/4”。这时候引导学生比较这三种方法:刚才同学们用画图、化成小数、通分化成同分母分数这几种方法算出了二分之一加四分之一的结果,这几种方法有什么相同的地方?通过探究发现这几种方法都是把新知识转化成旧知识,对学生渗透了转化是一种很好的数学学习方法,它帮助我们用已经学过的知识解决新的问题。
四、加强对比,形成新的算理算法
寻找新知和旧知之间的共同点和不同点是形成计算方法的关键之处,一个新知识学习需要利用相关旧知识时,最好要通过对比的方法发现新旧知识之间的异同点,有效地把握住新知的实质,防止其他因素的干扰,影响新知的形成。特别是学生原有知识与新知之间相似但不完全相同,并且原先的学习不清晰时,最容易出现错误的结论。比如,苏教版教材中先学习小数和整数相乘,如果学习时对积的小数位数的确定方法不准确时就会影响后继学习,所以在教学小数乘小数,学生在理解算理,知道为什么乘数中一共有几位小数积就有几位小数后,出示整数乘整数、小数乘整数以及末位有0的小数乘法算式组织学生对比,发现小数乘小数和整数乘整数、小数乘整数的区别,进而总结出小数乘小数的计算方法。
再比如除数是小数的除法教学时,关键抓住怎样把除数是小数的除法转化成前面学过的除数是整数的除法。引导学生用整数除法的计算方法和转化为整数除法的两种方法解决问题。再通过两种方法的比较,让学生理解除数是小数的除法是除数是整数除法的后继发展,看到两种方法的联系。所以,这个新知教学要紧紧围绕除数的转化展开,突出怎样把除数是小数的除法转化成除数是整数的除法,最终形成算理算法。
在小学数学教学中,经历知识的形成过程,渗透转化的思想方法非常重要,它是一种基本的数学思想方法,在计算教学中关于转化思想渗透的例子更是举不胜举。不过,转化的思想方法的形成是一个慢过程,它要学生在不断的理解和应用过程中慢慢形成。我们在课堂教学中要逐步渗透,要想方设法为学生不断提供促动思维发生的情境和素材,帮助学生形成转化的脉络,培养转化的意识,逐步形成转化的思想。变繁为简,变难为易,变新为旧等等,在这一思想形成的过程中,不仅可以复习巩固旧知识,促进理解掌握新知识,还可以提高学生学习数学的自信心,培养学生的思维品质,帮助他们学会思考问题的方法,这正是我们数学教师义不容辞的责任。
(责任编辑:李雪虹)
一、研读教材,理清脉络找准生长点
小学数学教材关于计算教学中运用转化思想方法的实例很多,像小数加减法、小数乘除法、异分母分数加减法、分数乘除法等等,都需要利用转化的思想方法将新知转化成已经学过的旧知来解决。在实际教学中,很多数学老师为了节省时间直接将计算的方法交给学生,然后进行操练,达到计算熟练的程度。这样,表面上看是提高了课堂教学的效率,实际上是剥夺了学生自主探究算理,获得新知的权利,使学生变成了一个不会思考,不会探究,只会机械接受知识的容器。为了避免这种现象的出现,作为数学老师必须更新观念,认真研读教材。研读数学教材,就是要分析新知往前向后的知识系统,分析学生已有知识的基础,把握住新知识的最近发展区,理清知识的来龙去脉,准确地找到新知产生的相关旧知,有效帮助学生在原有知识的基础上实现获取新知的跨越。
比如,小数加减法计算是在整数加减法的基础上教学的,在研读分析教材时应该关注这一点,教材通过引导学生利用已掌握的整数加减法的旧知迁移到小数加减法,反过来就是用转化的方法把小数加减法转化成整数加减法,即小数加减法和整数加减法在算理上是相通的,只是多了一个小数点处理的问题。这里的转化思想方法的渗透符合学生的学习心理规律。因此,准确找到新知的生长点可以有效促进学生由旧知向新知的转化,这应该成为教师课前钻研教材的重点之一。
二、创设情境,提供由旧到新的支撑点
教学时,常常会出现这样的情况,学生已经具备新知学习的知识基础,但他们自身却不能充分利用。教师不但要在学生学习新知前设法唤起旧知的重现,简单复习旧知,还要创设一定的情境,善于变化旧知的呈现方式,使之更加贴近新知,为新知学习提供巧妙的支撑。
例如,在教学小数乘整数,需要唤醒学生对乘法的意义、整数乘法等相关旧知时,没有简单直接呈现这些旧知让学生复习,而是创设了一个购物的情境,将整数乘法的几种情况包含其中。购物情境是比较简单的:出示超市情境中的四幅图(面包:4元/个 5个,火腿肠:0.8元/根 3根,进口蛇果:16元/个 12个,西瓜:2.35元/千克 3千克),组织学生自主选择其中一种食品,并根据所提供的信息,提出一个用乘法计算的数学问题。根据学生自己提出的问题,从而得到4道乘法算式。继而组织学生观察四道乘法算式,将它们分分类。这样,通过情境的创设,巧妙地将整数乘法分为一类,小数乘法分为另一类。整数乘法是过去学过的旧知,自然地对与新知有关的旧知进行了复习,这些旧知与新知学习中出现的小数转化成整数、用加法计算和把小数乘整数先看成整数乘整数计算等更为接近。实践证明,学生的旧知被充分利用后,与之相关的新知识才能水到渠成。
三、依托旧知,实现由旧到新的转化
有意义的数学学习都是在学生原有的学习基础上进行的,几乎不存在不受原有知识影响的学习。转化的思想方法很多情况下渗透在学生对旧知的正迁移过程中,旧知与新知之间的关系是垂直方向的纵向联系,依托旧知的复习,把新知顺应于原有的认知结构中,从而实现对新知的学习活动。这个获取新知的学习过程,即新知的形成过程,一定要让学生亲身经历。
例如,异分母分数加减法,依托的旧知基础是分数的意义、通分、约分和同分母分数加减法,涉及到的知识点较多,在转化的过程中,细节是很重要的,一定要提供时间和空间让学生依托旧知,经历这个由旧知到新知的转化过程,而不要直接告诉他们把异分母分数化成同分母分数进行计算,然后就进行操练,达到熟练的程度。这样的学习过程记得快忘得也快,是不符合学习规律的。
在实际教学时,通过班级黑板报版面设计的情境让学生提出问题,复习相关的旧知后,小组讨论“1/2 1/4”该怎样计算呢?出示研究提示:先独立思考,可以画一画、想一想、算一算,把自己的方法记录下来。把自己的想法在小组内交流。然后让学生汇报交流,说说是怎么想的?学生出现的三种方法逐一展示:(1)画一画。这种方法可以让学生先在实物投影上展示,让学生说说思考的过程。(2)化成小数。转化成小数,变成我们学过的知识。(3)通分。老师引导学生重点理解这一种方法。根据学生回答,板书并明确将异分母分数加法转化为同分母分数“2/4 1/4=3/4”。提出问题:为什么要通分?通分的依据是什么?通分后怎么计算?引导学生理解“2/4 1/4”的算理:分母不同,就是分数单位不同,转化成分数单位相同的分数后,就是“1个1/4加2个1/4等于3个1/4,也就是3/4”。这时候引导学生比较这三种方法:刚才同学们用画图、化成小数、通分化成同分母分数这几种方法算出了二分之一加四分之一的结果,这几种方法有什么相同的地方?通过探究发现这几种方法都是把新知识转化成旧知识,对学生渗透了转化是一种很好的数学学习方法,它帮助我们用已经学过的知识解决新的问题。
四、加强对比,形成新的算理算法
寻找新知和旧知之间的共同点和不同点是形成计算方法的关键之处,一个新知识学习需要利用相关旧知识时,最好要通过对比的方法发现新旧知识之间的异同点,有效地把握住新知的实质,防止其他因素的干扰,影响新知的形成。特别是学生原有知识与新知之间相似但不完全相同,并且原先的学习不清晰时,最容易出现错误的结论。比如,苏教版教材中先学习小数和整数相乘,如果学习时对积的小数位数的确定方法不准确时就会影响后继学习,所以在教学小数乘小数,学生在理解算理,知道为什么乘数中一共有几位小数积就有几位小数后,出示整数乘整数、小数乘整数以及末位有0的小数乘法算式组织学生对比,发现小数乘小数和整数乘整数、小数乘整数的区别,进而总结出小数乘小数的计算方法。
再比如除数是小数的除法教学时,关键抓住怎样把除数是小数的除法转化成前面学过的除数是整数的除法。引导学生用整数除法的计算方法和转化为整数除法的两种方法解决问题。再通过两种方法的比较,让学生理解除数是小数的除法是除数是整数除法的后继发展,看到两种方法的联系。所以,这个新知教学要紧紧围绕除数的转化展开,突出怎样把除数是小数的除法转化成除数是整数的除法,最终形成算理算法。
在小学数学教学中,经历知识的形成过程,渗透转化的思想方法非常重要,它是一种基本的数学思想方法,在计算教学中关于转化思想渗透的例子更是举不胜举。不过,转化的思想方法的形成是一个慢过程,它要学生在不断的理解和应用过程中慢慢形成。我们在课堂教学中要逐步渗透,要想方设法为学生不断提供促动思维发生的情境和素材,帮助学生形成转化的脉络,培养转化的意识,逐步形成转化的思想。变繁为简,变难为易,变新为旧等等,在这一思想形成的过程中,不仅可以复习巩固旧知识,促进理解掌握新知识,还可以提高学生学习数学的自信心,培养学生的思维品质,帮助他们学会思考问题的方法,这正是我们数学教师义不容辞的责任。
(责任编辑:李雪虹)