论文部分内容阅读
In this paper, we investigate the coupling of natural boundary element and finite ele-ment methods of exterior initial boundary value problems for hyperbolic equations. Thegoveing equation is first discretized in time, leading to a time-step scheme, where anexterior elliptic problem has to be solved in each time step. Second, a circular artifi-in an unbounded domain is transformed into the nonlocal boundary value problem in abounded subdomain. And the natural integral equation and the Poisson integral formulaare obtained in the infinite domain Ω2 outside circle of radius R. The coupled variationalformulation is given. Only the function itself, not its normal derivative at artificial bound-and the boundary element stiffness matrix has a few different elements. Such a coupledmethod is superior to the one based on direct boundary element method. This paper dis-cusses finite element discretization for variational problem and its corresponding numericaltechnique, and the convergence for the numerical solutions. Finally, the numerical exampleis presented to illustrate feasibility and efficiency of this method.