【摘 要】
:
为了解决局部放电测量现场中信号淹没在周期性窄带干扰中的问题,文中提出一种应用于变压器局部放电在线监测系统的改进变步长最小均方(least mean square,LMS)自适应滤波算法,通过构造一个新型滤波函数结合实际情况中AD芯片量程自适应调整步长,解决了传统LMS算法需要阶数和步长匹配、收敛性差、容易发散的缺点.通过改变滤波器阶数和参考信号时延,分析改进算法收敛速度及稳态误差,并对测试中发现时延为0的特殊情况进行了讨论分析,为高信噪比自适应滤波器设计提供了参考.改变新方法初始迭代步长同传统固定步长LM
【机 构】
:
上海电力大学电子与信息工程学院,上海200120;国网安徽省电力有限公司安庆供电公司,安庆246000;国网江西省电力有限公司电力科学研究院,南昌330000
论文部分内容阅读
为了解决局部放电测量现场中信号淹没在周期性窄带干扰中的问题,文中提出一种应用于变压器局部放电在线监测系统的改进变步长最小均方(least mean square,LMS)自适应滤波算法,通过构造一个新型滤波函数结合实际情况中AD芯片量程自适应调整步长,解决了传统LMS算法需要阶数和步长匹配、收敛性差、容易发散的缺点.通过改变滤波器阶数和参考信号时延,分析改进算法收敛速度及稳态误差,并对测试中发现时延为0的特殊情况进行了讨论分析,为高信噪比自适应滤波器设计提供了参考.改变新方法初始迭代步长同传统固定步长LMS算法的迭代过程进行了仿真对比,证明了新方法具有收敛速度快、不易发散的优点.最后,通过实验室搭建的变压器局放在线监测装置,对比分析了实测数据下传统LMS算法与本文算法的不同效果,通过对信噪比(SNR)、均方误差(MSE)和波形相似系数(NCC)三种指标对比,验证了新方法的优越性.
其他文献
斑海豹依靠其具有波状外形的胡须,可感知猎物尾迹流场中的涡流,进而循迹追踪.对斑海豹胡须感知涡流特征的机制进行研究具有重要的科学意义和应用价值.本文根据斑海豹胡须的外形参数,制作了1:30的实验模型,在水槽中研究了均匀流场和尾迹流场中单个胡须模型和胡须模型阵列的单自由度流致振动特性,分析了模型振动响应与涡流特征的关联.结果表明,在均匀流场中,零攻角条件下,胡须的波状外形具有显著的抑振作用,胡须模型在一定的折合流速范围内具有较低的振动幅值;而当来流攻角较大时(α≥30°),振幅显著提高.在固定圆柱形成的尾迹流
在低飞行马赫数条件下,乙烯燃料超燃冲压发动机为实现成功点火及稳定燃烧,常使用先锋氢引燃乙烯,本文通过试验研究了多种喷注方案下的超燃燃烧室流动特性、火焰传播特性及燃烧稳定性,喷注方案包括单先锋氢、单乙烯和组合喷注方式.超燃燃烧室入口马赫数为2.0,总温为953 K,总压为0.82 MPa.多种非接触光学测量手段被应用于超燃冲压发动机流场结构和火焰传播规律的诊断,包括纹影、CH自发光照相和OH-PLIF,并使用10 kHz的压力传感器来采集燃烧室上壁面中线处压力.结果表明:在无燃料喷注情况下,发动机内流场会以
压气机流动稳定性自适应控制是未来智能航空发动机的一项关键技术.基础研究需要回答3个关切:如何描述系统的稳定性?如何改变系统的稳定性?如何监测系统的稳定性?为此,本团队在压气机流动稳定性通用理论、壁面阻抗边界扩稳方法和在线实时失速预警技术等3个方面开展了系统深入的研究工作.(1)所发展的叶轮机流动稳定性通用理论既能包含流动非均匀性又能考虑叶片几何,计算高效,预测精度高,为压气机气动/稳定性一体化设计提供了可靠的评估工具.(2)所发展的基于壁面阻抗边界调控策略的SPS(stall precursor-supp
神经网络作为一种强大的信息处理工具在计算机视觉,生物医学,油气工程领域得到广泛应用,引发多领域技术变革.深度学习网络具有非常强的学习能力,不仅能发现物理规律,还能求解偏微分方程.近年来基于深度学习的偏微分方程求解已是研究新热点.遵循于传统偏微分方程解析解、偏微分方程数值解术语,本文称用神经网络进行偏微分方程求解的方法为偏微分方程智能求解方法或偏微分方程神经网络求解方法.本文首先简要介绍偏微分方程智能求解发展历程,然后从反演未知偏微分方程与求解已知偏微分方程两个角度展开讨论,重点讨论已知偏微分方程的求解方法
风洞测力试验是高超声速飞行器研发的重要环节,随着这项技术的发展,试验模型的大尺度化成为高超声速风洞试验的趋势.在几百毫秒的有效测试时间内,大尺度测力系统刚度减弱等问题会严重导致气动力辨识精度变差,试验模型大尺度化对短时脉冲燃烧风洞精确气动力辨识带来了挑战.对此本文提出了一种新的基于传统信号处理结合深度学习的智能气动力辨识算法,该框架分解两个主要阶段:(1)信号分解,(2)数据训练.其中信号分解阶段通过变分模态分解将原始数据分解为不同模态子信号,随后通过Pearson相关性分析筛除干扰子信号;在训练阶段通过
乘波体因优异的气动特性,被认为是突破现有“升阻比屏障”的有效途径之一,已成为高超声速飞行器气动设计的研究热点.针对常规单级压缩乘波前体压缩量不足的问题,基于局部偏转吻切方法提出一种多级压缩乘波体设计方法,实现了多道非轴对称激波的逆向乘波设计.通过引入多道非轴对称激波,可充分发挥乘波前体的预压缩效果,并为复杂外形条件下的高超声速飞行器设计提供新的思路.以基于非轴对称椭圆锥激波的两级压缩乘波体为例阐述了该多级设计方法,并在相同条件下设计了3种不同长短轴比的两级椭圆锥压缩乘波体.设计状态下的数值模拟结果表明,无
斜爆轰发动机和激波诱导燃烧冲压发动机在高马赫数吸气式发动机中具有重要应用前景,但是斜爆轰发动机是否具有足够大的净推力,还是一个未知的问题,因此需要对高马赫数冲压发动机的推进性能以及提高推力的方法进行理论研究.本文主要分为3部分.第1部分理论研究了超燃冲压发动机中的爆燃波和爆轰波的传播特性.保证发动机稳定燃烧是提高推力的前提.通过对爆燃波和爆轰波传播特性研究,得到了影响发动机燃烧稳定性的关键参数和物理规律.第2部分研究了发动机处于热壅塞临界状态下的燃烧规律和推力特性.在临界状态下,燃烧室入口气流速度正好等于
提高负荷识别准确率是实现非侵入式负荷监测的关键技术.针对现有模型识别准确率低、特征冗余度高、可分性较差的问题,提出一种基于随机森林(random forest,RF)和遗传算法优化极限学习机(genetic algorithm optimized extreme learning machine,GA-ELM)的负荷识别方法.首先,从稳态电流信号中提取时域和频域信息作为负荷特征;其次,为进一步减小特征集的冗余度并剔除可分性较差的特征,使用随机森林算法对特征进行优选,得到最优特征集;最后,使用遗传算法优化极
针对永磁同步电机转矩脉动偏大时电机输出性能较差的问题,对W型永磁同步电机的转矩脉动进行详细分析并研究其抑制方法.首先利用等效磁路法与洛伦兹力定律,推导出电机转矩脉动解析式,基于解析式对W型磁极的位置参数进行优化,并利用有限元软件仿真验证;然后利用转子极面偏心的方法进一步削弱电机转矩脉动,并分析最优偏心距.研究表明,当W型磁极布置位置合适时,电机具有良好的输出特性;通过转子极面偏心,电机转矩脉动降低12%,齿槽转矩与气隙磁密谐波含量大幅降低,电机性能显著提升.
激励轨迹的选取和优化是机器人动力学参数辨识的重要基础.为了提高机器人动力学参数的辨识精度,以SCARA机器人为研究对象,设计了基于双层自适应遗传算法的机器人激励轨迹优化方案.运用Newton-Euler法建立了机器人的动力学模型,并对机器人的动力学模型进行线性分离,得到了机器人的最小惯性参数集和对应的观测矩阵.分析机器人的参数辨识方程,确定了观测矩阵条件数最小的优化目标.针对传统遗传算法进行改进,提出了双层自适应机制,提升了算法的全局搜索能力和搜索效率.最后利用MATLAB和ADAMS进行联合仿真实验,使