论文部分内容阅读
基于EMD和概率神经网络的说话人识别方法,主要针对语音信号具有强时变特性问题,通过自适应性的经验模态分解(EMD)方法,对不同说话人的语音信号进行分解后,得到反映信号特征的本征模态函数(IMF),然后计算IMF的能量并进行归一化得到能量特征向量,利用具有简单高效的模式识别功能的概率神经网络(PNN),对不同说话人的语音能量特征向量识别,从而达到说话人识别的目的。实验结果表明,在噪声污染不大的情况下,该方法能够准确快速地识别说话人身份,具有较高的识别性能。