论文部分内容阅读
Plastic pipes reinforced by cross helically wound steel wires (PSP), which have exhibited excellent mechanical performance, consist of inner polyethylene (PE) layer, winding layer and outer PE layer. The winding layer is composed of two monolayers where steel wires are cross helically wound. An analytical procedure is developed to predict the short-term burst pressure of PSP as the monolayer is assumed to be elastic and orthotropic. The 3D anisotropic elasticity and Maximum Stress Failure Criterion are employed in the formulation of the elasticity problem. Good agreement between the theoretical results and the experimental data shows that the proposed approach can well predict the short-term burst pressure of PSP.
Plastic pipes reinforced by cross helically wound steel wires (PSP), which have exhibited excellent mechanical performance, consist of inner polyethylene (PE) layer, winding layer and outer PE layer. The winding layer is composed of two monolayers where steel wires are cross helically An analytical procedure is developed to predict the short-term burst pressure of PSP as the monolayer is assumed to be elastic and orthotropic. The 3D anisotropic elasticity and Maximum Stress Failure Criterion are employed in the formulation of the elasticity problem. Good agreement between the theoretical results and the experimental data shows that the proposed approach can well predict the short-term burst pressure of PSP.