论文部分内容阅读
AIM: To investigate whether induction of tolerance of mice to lipopolysaccharide (LPS) was able to inhibit apoptotic reaction in terms of characteristic DNA fragmentation and protect mice from lethal effect. METHODS: Experimental groups of mice were pretreated with non-lethal amount of LPS (0.05 μg). Both control and experimental groups simultaneously were challenged with LPS plus D-GaIN for 6-7 h. The evaluations of both DNA fragmentations from the livers and the protection efficacy against lethality to mice through induction of tolerance to LPS were conducted. RESULTS: In the naive mice challenge with LPS plus D-GaIN resulted in complete death in 24 h, whereas a characteristic apoptotic DNA fragmentation was exclusively seen in the livers of mice receiving LPS in combination with D-GaIN. The mortality in the affected mice was closely correlated to the onset of DNA fragmentation. By contrast, in the mice pre-exposed to LPS, both lethal effect and apoptotic DNA fragmentation were suppressed when challenged with LPS/D-GalN. In addition to LPS, the induction of mouse tolerance to TNF also enabled mice to cross-react against death and apoptotic DNA fragmentation when challenged with TNF and/or LPS in the presence of D-GaIN. Moreover, this protection effect by LPS could last up to 24 h. TNFR1 rather than TNFR2 played a dual role in signaling pathway of either induction of tolerance to LPS for the protection of mice from mortality or inducing morbidity leading to the death of mice. CONCLUSION: The mortality of D-GalN-treated mice in response to LPS was exceedingly correlated to the onset of apoptosis in the liver, which can be effectively suppressed by brief exposure of mice to a minute amount of LPS. The induced tolerance status was mediated not only by LPS but also by TNF. The developed tolerance to either LPS or TNF can be reciprocally cross-reacted between LPS and TNF challenges, whereas the signaling of induction of tolerance and promotion of apoptosis was through TNFR1, rather than TNFR2.
AIM: To investigate whether induction of tolerance of mice to lipopolysaccharide (LPS) able to cope apoptotic reaction in terms of characteristic DNA fragmentation and protect mice from lethal effect. METHODS: Experimental groups of mice were pretreated with non-lethal amount of LPS ( 0.05 μg). Both control and experimental groups simultaneously even challenged with LPS plus D-GaIN for 6-7 h. The evaluations of both DNA fragments from the livers and the protection efficacy against lethality to mice through induction of tolerance to LPS were conducted. RESULTS: In the naive mice challenge with LPS plus D-GaIN resulted in complete death in 24 h, whereas a characteristic apoptotic DNA fragmentation was exclusively seen in the livers of mice receiving LPS in combination with D-GaIN. The mortality in the affected mice was contrasting to the onset of DNA fragmentation. By contrast, in the mice pre-exposed to LPS, both lethal effect and apoptotic DNA fragmentation were supp ressed when challenged with LPS / D-GalN. In addition to LPS, the induction of mouse tolerance to TNF also enabled mice to cross-react against death and apoptotic DNA fragmentation when challenged with TNF and / or LPS in the presence of D-GaIN . This protection effect by LPS could last up to 24 h. TNFR1 rather than TNFR2 played a dual role in signaling pathway of either induction of tolerance to LPS for the protection of mice from mortality or inducing morbidity leading to the death of mice. CONCLUSION: The mortality of D-GalN-treated mice in response to LPS was exceedingly correlated to the onset of apoptosis in the liver, which can be effectively suppressed by brief exposure of mice to a minute amount of LPS. The induced tolerance status was mediated not only by LPS but also by TNF. The developed tolerance to either LPS or TNF can be reciprocally cross-reacted between LPS and TNF challenges, while the signaling of induction of tolerance and promotion of apoptosis was through TNFR1, rather than TNFR2.