论文部分内容阅读
The advantages of nitride-based dual-wavelength light-emitting diodes (LEDs) with an InAlN electron blocking layer (EBL) are studied. The emission spectra,carrier concentration in the quantum wells (QWs),energy band and internal quantum efficiency (IQE) are investigated. The simulation results indicate that an LED with an InAlN EBL performs better over a conventional LED with an AlGaN EBL and an LED with p-type-doped QW barriers. All of the advantages are due to the enhancement of carrier confinement and the lower electron leakage current. The simulation results also show that the efficiency droop is markedly improved and the luminous intensity is greatly enhanced when an InAlN EBL is used.
The advantages of nitride-based dual-wavelength light-emitting diodes (LEDs) with an InAlN electron blocking layer (EBL) are studied. The emission spectra, carrier concentration in the quantum wells (QWs), energy band and internal quantum efficiency The simulation results indicate that an LED with an InAlN EBL perform better than a conventional LED with an AlGaN EBL and an LED with p-type-doped QW barriers. All of the advantages due due to the enhancement of carrier confinement and the lower electron leakage current. The simulation results also show that the efficiency droop is markedly improved and the luminous intensity is greatly enhanced when an InAlN EBL is used.