论文部分内容阅读
传统的Mean-Shift算法在目标跟踪过程中,由于跟踪窗口尺度固定而不能很好适应目标的尺度变化,当目标尺度减小时,目标区域所提取的特征向量包含过多的背景干扰信息,目标尺度增大会使跟踪窗口偏离目标的质心,降低跟踪的鲁棒性。为此文中采用万向椭圆的方式对目标区域进行描述,减少背景干扰信息以突出目标模型,提取椭圆区域的加权颜色直方图为目标特征,采用尺度加减法自适应调整椭圆区域的大小,并在跟踪过程中根据运动轨迹动态调整椭圆方向,以增强跟踪的准确性。实验结果表明万向椭圆能够更好地描述跟踪目标的尺度和方向,在目