论文部分内容阅读
针对现有无监督语音样例检测精度不高的现状,提出一种基于后验概率特征和主成分分析的方法。该方法首先利用无标注语料训练GMM,得到训练数据频谱参数的高斯混元后验概率特征向量序列;采用层次聚类算法检测其边界信息得到声学分段,利用K-means算法对所有声学分段聚类并添加标签,通过声学分段和标签训练基于后验概率的声学分段模型(ASMs);ASMs将查询项-9检索文档的高斯混元后验概率转换为新的后验概率,利用主成分分析方法对其优化处理,保持概率向量维数不变,去除噪声信息,提高后验概率特征向量鲁棒性与区分性:最后通过