论文部分内容阅读
基于保角哈密尔顿系统的辛形式,对带依时系数的广义KdV(TDKdV)方程提出一个保角能量守恒算法.通过算子分裂方法,方程被分裂成一个哈密尔顿系统和一个耗散系统,其中,耗散系统被精确求解.哈密尔顿系统在时间上采用二阶平均向量场(AVF)方法离散,在空间上采用傅里叶拟谱方法离散.在合适的边界条件下,所提方法可精确保持离散保角能量守恒律及离散保角质量守恒律.数值实验验证文中方法在长时间数值模拟过程中的有效性.