论文部分内容阅读
泛函网络是最近提出的一种对神经网络的有效推广。与神经网络不同,它处理的是一般的泛函模型,其神经元函数不固定,而是可学习的,且在各个处理单元之间没有权值。同神经网络一样,至今还没有系统设计方法能够对给定问题设计出近似最优的结构。鉴于此,将整个泛函网络的设计分解为单个神经元的逐个设计;然后,在此框架下提出了基于遗传规划的单个神经元的设计方法,该方法可实现对神经元函数类型的优化。仿真实验表明,本方法是有效可行的,能用较小的网络规模获得更满意的泛化特性。