论文部分内容阅读
通过分析K2,BIC,AIC和IM等方式的原理,改进K2算法,在不考虑先验知识的基础上,创建了新的基于隐式网络的打分函数取代了原有算法的评分规则,实现贝叶斯网络结构学习.仿真实验结果表明,针对标准数据集学习,隐式法的贝叶斯网络学习算法在没有先验知识的条件下和依赖先验知识的基于BDe评分的K2算法相比收敛速度和准确率有一定的改进.