论文部分内容阅读
为考虑多因素对电量的影响及提高月电量预测准确率,提出基于K-L信息量法和ARIMA误差修正的月度电量预测方法。在筛选相关性强的指标基础上,利用相关分析法对影响指标与电量进行回归建模,计算拟合误差并构建新的非平稳时间序列,结合ARIMA模型对此序列进行修正,进而获得准度性更佳的月度电量预测值,具有较高的应用价值。