论文部分内容阅读
在传统的K-均值聚类算法中,聚类数K必须事先给定,然而,实际中K值很难被精确的确定,K值是否合理直接影响着K-均值算法的好坏。针对这个缺点,提出一种优化聚类数算法,根据聚类算法中类内相似度最大差异度最小和类间差异度最大相似度最小的基本原则,构建了距离评价函数F(S,K)作为最佳聚类数的检验函数,建立了相应的数学模型,并通过仿真实验进一步验证了新算法的有效性。