论文部分内容阅读
近年来基于深度学习的方法识别手写体汉字取得了很多突破,但现有的一些方法存在计算参数多、模型收敛慢、训练时间长的缺点。针对以上问题,提出了基于GoogLeNet的脱机手写体汉字识别模型HCCR-IncBN,模型使用了5个Inception-v2模块,训练参数较少,模型收敛更快,存储整个模型只需要26MB的存储空间。实验利用HCCR-IncBN模型在ICDAR2013数据集获得了95.94%的识别准确率,表明模型在没有使用任何手写体汉字的特定领域知识和无需人工提取其他特征的前提下能够获得较高的识别效果。