论文部分内容阅读
利用Z-scan、电流、电压探头,通过测量等离子体吸收功率、天线电流、电压、等离子体直流悬浮电位等多种参数,研究了匹配网络、天线耦合强度、导电地面积、气压等多种因素对E,H放电模式特性及模式转化行为的影响.基于Γ型阻抗匹配网络中串联电容对射频电源输出功率的影响,提出了E—H放电模式转化的正负反馈区概念.研究发现:在相同的其他放电条件下,处于正反馈区时等离子体放电易于产生跳变型模式转化,而且模式跳变的临界天线电流、回滞宽度、跳变临界功率、跳变功率差等参数均随阻抗匹配网络参数产生明显变化;在负反馈区内,模式转化过程趋于连续.由于阻抗匹配网络的影响,E—H模式的跳变电流并不是总大于H—E模式的跳变电流.在不同导电地面积、阻抗匹配网络、气压下,模式转化过程中等离子体直流悬浮电位的变化呈现多样性.
By using Z-scan, current and voltage probes, a variety of parameters such as matching network, coupling strength of antenna, conductive area, air pressure and so on are studied by measuring plasma absorption power, antenna current, voltage and plasma DC floating potential On the characteristics of E, H discharge mode and the mode conversion behavior.Based on the influence of series capacitance on the output power of RF power supply in Γ-type impedance matching network, the concept of positive and negative feedback region of E-H discharge mode conversion is proposed. Under the same other discharge conditions, the plasma discharge is prone to transition mode transition in the positive feedback region, and the critical antenna current, hysteresis width, transition critical power, transition power difference and other parameters of mode transition are all matched with impedance matching The network parameters change obviously, and in the negative feedback area, the mode conversion process tends to be continuous.Due to the influence of impedance matching network, the jumping current in E-H mode is not always larger than the jumping current in H-E mode. Area, impedance matching network, atmospheric pressure, the mode of DC plasma during plasma levitation potential changes showed diversity.