论文部分内容阅读
针对基于K均值聚类的支持向量数据描述(SVDD)学习算法(KMSVDD)识别精度低于传统SVDD学习算法的问题,提出一种改进算法。将各聚类簇中支持向量合并学习生成中间模型,从支持向量以外的非支持向量数据中找出违背中间模型KKT条件的学习数据,并将这些数据与聚类簇中支持向量合并学习继而得到最终学习模型。实验结果证明,该改进算法的计算开销与KMSVDD相近,但识别精度却高于KMSVDD,与传统SVDD相近。