基于手势特征融合的操作动作识别

来源 :计算机工程与应用 | 被引量 : 0次 | 上传用户:fazaizhaoyun
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对动态复杂场景下的操作动作识别,提出一种基于手势特征融合的动作识别框架,该框架主要包含RGB视频特征提取模块、手势特征提取模块与动作分类模块。其中RGB视频特征提取模块主要使用I3D网络提取RGB视频的时间和空间特征;手势特征提取模块利用Mask R-CNN网络提取操作者手势特征;动作分类模块融合上述特征,并输入到分类器中进行分类。在EPIC-Kitchens数据集上,提出的方法识别抓取手势的准确性高达89.63%,识别综合动作的准确度达到了74.67%。
其他文献
针对FDM型3D打印机喷头温度控制系统的非线性、大滞后等特点,传统PID控制难以满足实际的性能要求。为提高控制系统性能,提出预测模型双反馈变论域分形模糊分数阶PID控制器。分数阶PID控制为系统提供更多的控制余度;变论域模糊控制的论域能够随着误差的变化而变化,实现不同时刻选择不同论域的模糊规则;短反馈算法的引入能够构成双层反馈控制,实现对喷头温度的快速、精准控制;系统反馈环节建立预测模型,实现更加精确的控制。针对变论域模糊分数阶PID控制器中参数选择,提出一种改进的鲸鱼算法进行参数优化,增强控制器的自适应
计算卸载技术作为移动边缘计算(MobileEdgeComputing,MEC)的关键技术,通过合理的卸载决策能有效解决终端设备计算能力弱、时延长和能耗高等问题。介绍了MEC的概念、参考架构、部署方案和典型应用场景;分别从卸载决策的目标、粗粒度、细粒度的卸载方式及MEC与端对端(Device-to-Device,D2D)技术协作下的卸载方式详细阐述了计算卸载技术研究现状,分析和总结了该领域已有研究成果;对该领域的未来研究方向进行了思考,并给出了该领域面临的一些问题和挑战。
为实现基于道路视频摄像机视频处理的运动车辆精确测速,提出基于分道线长度、车道宽度和分道线消失点的道路云台摄像机参数自动标定方法,以对摄像机焦距、俯仰角、旋转角、离地高度等参数进行自动标定。实验结果表明,在应用于基于视频处理的运动车辆速度检测时,所提方法与雷达测速在平均误差以及误差标准差方面远小于我国公路测速允许的误差上限,验证了方法的准确性和有效性。
针对现有查询响应时间预测统计模型存在准确率无法提高、特征选取单一、动态性差的问题,综合考虑查询计划、查询交互两大因素,提出采用结构简单、易搭建的人工神经网络——全连接神经网络预测并行查询响应时间。采集查询计划与查询交互数据作为输入特征,查询真实的响应时间作为预测标签,训练模型,进行预测。此方法不需要预先知道样本数据的数学模型函数,仅通过对样本数据集的学习建立模型,建模过程简单,可达较好的预测效果。实验结果表明,全连接神经网络模型准确率高达79.99%,较当前代表性的统计模型提高约6%。
为了实现大型语料库中近义词/同义词短语的查找,提出了一种基于共同语境的近义词/同义词短语查找模型,它通过n-gram分布式方法捕获语义相似性,不需要解析就能隐式地保存局部句法结构,使底层方法语言独立;具体实现分为两个阶段:第一阶段是上下文收集和过滤,即用围绕查询短语的本地上下文作为条件模型的特征来捕获语义和语法信息。第二阶段是候选词短语收集和筛选,即对数据中的每个“左”“右”和“配对”的全部实例进行迭代,以收集一组近义词/同义词候选短语;还给出了构成模型的要素和用于评价模型性能的评分函数;基于不同大型语料
相变存储器具有集成度高、功耗低、非易失等优良特性,是作为非易失性内存最有潜力的存储介质之一。如何降低其写入延时和增加其使用寿命,是PCM作为非易失性内存时亟需解决的问题。为此,提出利用相变存储器擦除和写入时间不对称的特点擦写独立的写入方法,RSIW(ResetandSetIndependentlyWrite)。该方法不同于传统的写入方案,将写和擦的操作分离,让慢速的写操作在空闲时进行,使得相变存储器的写入速度获得显著提升。同时,RSIW还能结合磨损均衡的策略,有效地均衡各个块的写入频率。对擦写独立的写入方
涂层织物在生产制造和使用中易产生折皱损伤,人工折皱检测效率较低,传统图像处理方法的检测精度无法满足要求。提出一种基于深度卷积神经网络的涂层织物折皱识别和检测方法。通过标准揉搓试验建立数据集,网络编码和解码器分别采用多尺度特征融合结构和优化上采样模块,使用形态学方法进行折皱几何信息的实时统计。当前检测方法准确率达到95.78%,比传统语义分割技术及其他深度学习模型有很大的提升。
不同的控制参数设定和生成策略(交叉和变异)都会对多目标差分进化算法的性能产生显著影响。为实现其控制参数和变异策略的实时自适应调整,提出一种基于隐马尔可夫链的自适应多目标差分进化算法。该算法利用隐马尔可夫模型对种群信息进行分析并得到最优序列,通过最优序列与实际状态序列的对比得出变异缩放因子F与交叉概率CR的最大似然估计值,从而实现控制参数的自适应调整;同时,通过隐马尔可夫模型得到一组策略链来辅助多目标差分进化算法来选择合适的变异策略。通过与其他9种多目标进化算法在16个测试函数上的对比研究,结果表明所提算法
针对传统长短时记忆网络(LongShort-TermMemory,LSTM)和卷积神经网络(ConvolutionNeuralNetwork,CNN)在提取特征时无法体现每个词语在文本中重要程度的问题,提出一种基于LSTM-Attention与CNN混合模型的文本分类方法。使用CNN提取文本局部信息,进而整合出全文语义;用LSTM提取文本上下文特征,在LSTM之后加入注意力机制(Attention)提取输出信息的注意力分值;将LSTM-Attention的输出与CNN的输出进行融合,实现了有效提取文本特征
在聚类研究中,通常认为数据集的对象、属性等方面是满足独立同分布的,它们之间是互不影响的,然而实际上它们之间存在着某些潜在的联系,即非独立同分布。为了更好地挖掘其存在的潜在关系,将数据集进行二次幂处理,计算皮尔森相关系数后得到二次幂耦合的数据集样本,为了解决K-means聚类算法存在选取初始中心点的敏感性问题,基于密度的思想,通过计算密度参数合理调整高密度区域,利用聚类迭代的方法进行选点,将高密度区域中的密度最大点作为初始点,距离初始点最远点作为第二个点,以前两个点为中心聚类迭代得到两个质心,将距离两个质心